Metamath Proof Explorer


Theorem estrres

Description: Any restriction of a category (as an extensible structure which is an unordered triple of ordered pairs) is an unordered triple of ordered pairs. (Contributed by AV, 15-Mar-2020) (Revised by AV, 3-Jul-2022)

Ref Expression
Hypotheses estrres.c φC=BasendxBHomndxHcompndx·˙
estrres.b φBV
estrres.h φHX
estrres.x φ·˙Y
estrres.g φGW
estrres.u φAB
Assertion estrres φC𝑠AsSetHomndxG=BasendxAHomndxGcompndx·˙

Proof

Step Hyp Ref Expression
1 estrres.c φC=BasendxBHomndxHcompndx·˙
2 estrres.b φBV
3 estrres.h φHX
4 estrres.x φ·˙Y
5 estrres.g φGW
6 estrres.u φAB
7 ovex C𝑠AV
8 setsval C𝑠AVGWC𝑠AsSetHomndxG=C𝑠AVHomndxHomndxG
9 7 5 8 sylancr φC𝑠AsSetHomndxG=C𝑠AVHomndxHomndxG
10 eqid C𝑠A=C𝑠A
11 eqid BaseC=BaseC
12 eqid Basendx=Basendx
13 tpex BasendxBHomndxHcompndx·˙V
14 1 13 eqeltrdi φCV
15 fvex BasendxV
16 fvex HomndxV
17 fvex compndxV
18 15 16 17 3pm3.2i BasendxVHomndxVcompndxV
19 18 a1i φBasendxVHomndxVcompndxV
20 slotsbhcdif BasendxHomndxBasendxcompndxHomndxcompndx
21 20 a1i φBasendxHomndxBasendxcompndxHomndxcompndx
22 funtpg BasendxVHomndxVcompndxVBVHX·˙YBasendxHomndxBasendxcompndxHomndxcompndxFunBasendxBHomndxHcompndx·˙
23 19 2 3 4 21 22 syl131anc φFunBasendxBHomndxHcompndx·˙
24 1 funeqd φFunCFunBasendxBHomndxHcompndx·˙
25 23 24 mpbird φFunC
26 1 2 3 4 estrreslem2 φBasendxdomC
27 1 2 estrreslem1 φB=BaseC
28 6 27 sseqtrd φABaseC
29 10 11 12 14 25 26 28 ressval3d φC𝑠A=CsSetBasendxA
30 29 reseq1d φC𝑠AVHomndx=CsSetBasendxAVHomndx
31 30 uneq1d φC𝑠AVHomndxHomndxG=CsSetBasendxAVHomndxHomndxG
32 2 6 ssexd φAV
33 setsval CVAVCsSetBasendxA=CVBasendxBasendxA
34 14 32 33 syl2anc φCsSetBasendxA=CVBasendxBasendxA
35 34 reseq1d φCsSetBasendxAVHomndx=CVBasendxBasendxAVHomndx
36 fvexd φHomndxV
37 fvexd φcompndxV
38 3 elexd φHV
39 4 elexd φ·˙V
40 simp1 BasendxHomndxBasendxcompndxHomndxcompndxBasendxHomndx
41 40 necomd BasendxHomndxBasendxcompndxHomndxcompndxHomndxBasendx
42 20 41 mp1i φHomndxBasendx
43 simp2 BasendxHomndxBasendxcompndxHomndxcompndxBasendxcompndx
44 43 necomd BasendxHomndxBasendxcompndxHomndxcompndxcompndxBasendx
45 20 44 mp1i φcompndxBasendx
46 1 36 37 38 39 42 45 tpres φCVBasendx=HomndxHcompndx·˙
47 46 uneq1d φCVBasendxBasendxA=HomndxHcompndx·˙BasendxA
48 df-tp HomndxHcompndx·˙BasendxA=HomndxHcompndx·˙BasendxA
49 47 48 eqtr4di φCVBasendxBasendxA=HomndxHcompndx·˙BasendxA
50 fvexd φBasendxV
51 simp3 BasendxHomndxBasendxcompndxHomndxcompndxHomndxcompndx
52 51 necomd BasendxHomndxBasendxcompndxHomndxcompndxcompndxHomndx
53 20 52 mp1i φcompndxHomndx
54 20 40 mp1i φBasendxHomndx
55 49 37 50 39 32 53 54 tpres φCVBasendxBasendxAVHomndx=compndx·˙BasendxA
56 35 55 eqtrd φCsSetBasendxAVHomndx=compndx·˙BasendxA
57 56 uneq1d φCsSetBasendxAVHomndxHomndxG=compndx·˙BasendxAHomndxG
58 df-tp compndx·˙BasendxAHomndxG=compndx·˙BasendxAHomndxG
59 tprot compndx·˙BasendxAHomndxG=BasendxAHomndxGcompndx·˙
60 58 59 eqtr3i compndx·˙BasendxAHomndxG=BasendxAHomndxGcompndx·˙
61 57 60 eqtrdi φCsSetBasendxAVHomndxHomndxG=BasendxAHomndxGcompndx·˙
62 9 31 61 3eqtrd φC𝑠AsSetHomndxG=BasendxAHomndxGcompndx·˙