Description: Any restriction of a category (as an extensible structure which is an unordered triple of ordered pairs) is an unordered triple of ordered pairs. (Contributed by AV, 15-Mar-2020) (Revised by AV, 3-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | estrres.c | |
|
estrres.b | |
||
estrres.h | |
||
estrres.x | |
||
estrres.g | |
||
estrres.u | |
||
Assertion | estrres | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | estrres.c | |
|
2 | estrres.b | |
|
3 | estrres.h | |
|
4 | estrres.x | |
|
5 | estrres.g | |
|
6 | estrres.u | |
|
7 | ovex | |
|
8 | setsval | |
|
9 | 7 5 8 | sylancr | |
10 | eqid | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | tpex | |
|
14 | 1 13 | eqeltrdi | |
15 | fvex | |
|
16 | fvex | |
|
17 | fvex | |
|
18 | 15 16 17 | 3pm3.2i | |
19 | 18 | a1i | |
20 | slotsbhcdif | |
|
21 | 20 | a1i | |
22 | funtpg | |
|
23 | 19 2 3 4 21 22 | syl131anc | |
24 | 1 | funeqd | |
25 | 23 24 | mpbird | |
26 | 1 2 3 4 | estrreslem2 | |
27 | 1 2 | estrreslem1 | |
28 | 6 27 | sseqtrd | |
29 | 10 11 12 14 25 26 28 | ressval3d | |
30 | 29 | reseq1d | |
31 | 30 | uneq1d | |
32 | 2 6 | ssexd | |
33 | setsval | |
|
34 | 14 32 33 | syl2anc | |
35 | 34 | reseq1d | |
36 | fvexd | |
|
37 | fvexd | |
|
38 | 3 | elexd | |
39 | 4 | elexd | |
40 | simp1 | |
|
41 | 40 | necomd | |
42 | 20 41 | mp1i | |
43 | simp2 | |
|
44 | 43 | necomd | |
45 | 20 44 | mp1i | |
46 | 1 36 37 38 39 42 45 | tpres | |
47 | 46 | uneq1d | |
48 | df-tp | |
|
49 | 47 48 | eqtr4di | |
50 | fvexd | |
|
51 | simp3 | |
|
52 | 51 | necomd | |
53 | 20 52 | mp1i | |
54 | 20 40 | mp1i | |
55 | 49 37 50 39 32 53 54 | tpres | |
56 | 35 55 | eqtrd | |
57 | 56 | uneq1d | |
58 | df-tp | |
|
59 | tprot | |
|
60 | 58 59 | eqtr3i | |
61 | 57 60 | eqtrdi | |
62 | 9 31 61 | 3eqtrd | |