Metamath Proof Explorer


Theorem tpres

Description: An unordered triple of ordered pairs restricted to all but one first components of the pairs is an unordered pair of ordered pairs. (Contributed by AV, 14-Mar-2020)

Ref Expression
Hypotheses tpres.t φT=ADBECF
tpres.b φBV
tpres.c φCV
tpres.e φEV
tpres.f φFV
tpres.1 φBA
tpres.2 φCA
Assertion tpres φTVA=BECF

Proof

Step Hyp Ref Expression
1 tpres.t φT=ADBECF
2 tpres.b φBV
3 tpres.c φCV
4 tpres.e φEV
5 tpres.f φFV
6 tpres.1 φBA
7 tpres.2 φCA
8 df-res TVA=TVA×V
9 elin xTVA×VxTxVA×V
10 elxp xVA×Vabx=abaVAbV
11 10 anbi2i xTxVA×VxTabx=abaVAbV
12 1 eleq2d φxTxADBECF
13 vex xV
14 13 eltp xADBECFx=ADx=BEx=CF
15 eldifsn aVAaVaA
16 eqeq1 x=abx=ADab=AD
17 16 adantl aAx=abx=ADab=AD
18 vex aV
19 vex bV
20 18 19 opth ab=ADa=Ab=D
21 eqneqall a=AaAb=Dφx=BEx=CF
22 21 com12 aAa=Ab=Dφx=BEx=CF
23 22 impd aAa=Ab=Dφx=BEx=CF
24 20 23 biimtrid aAab=ADφx=BEx=CF
25 24 adantr aAx=abab=ADφx=BEx=CF
26 17 25 sylbid aAx=abx=ADφx=BEx=CF
27 26 impd aAx=abx=ADφx=BEx=CF
28 27 ex aAx=abx=ADφx=BEx=CF
29 28 adantl aVaAx=abx=ADφx=BEx=CF
30 15 29 sylbi aVAx=abx=ADφx=BEx=CF
31 30 adantr aVAbVx=abx=ADφx=BEx=CF
32 31 impcom x=abaVAbVx=ADφx=BEx=CF
33 32 com12 x=ADφx=abaVAbVx=BEx=CF
34 33 exlimdvv x=ADφabx=abaVAbVx=BEx=CF
35 34 ex x=ADφabx=abaVAbVx=BEx=CF
36 35 impd x=ADφabx=abaVAbVx=BEx=CF
37 orc x=BEx=BEx=CF
38 37 a1d x=BEφabx=abaVAbVx=BEx=CF
39 olc x=CFx=BEx=CF
40 39 a1d x=CFφabx=abaVAbVx=BEx=CF
41 36 38 40 3jaoi x=ADx=BEx=CFφabx=abaVAbVx=BEx=CF
42 14 41 sylbi xADBECFφabx=abaVAbVx=BEx=CF
43 13 elpr xBECFx=BEx=CF
44 42 43 imbitrrdi xADBECFφabx=abaVAbVxBECF
45 44 expd xADBECFφabx=abaVAbVxBECF
46 45 com12 φxADBECFabx=abaVAbVxBECF
47 12 46 sylbid φxTabx=abaVAbVxBECF
48 47 impd φxTabx=abaVAbVxBECF
49 3mix2 x=BEx=ADx=BEx=CF
50 3mix3 x=CFx=ADx=BEx=CF
51 49 50 jaoi x=BEx=CFx=ADx=BEx=CF
52 51 adantr x=BEx=CFφx=ADx=BEx=CF
53 12 14 bitrdi φxTx=ADx=BEx=CF
54 53 adantl x=BEx=CFφxTx=ADx=BEx=CF
55 52 54 mpbird x=BEx=CFφxT
56 2 elexd φBV
57 4 elexd φEV
58 56 6 57 jca31 φBVBAEV
59 58 anim2i x=BEφx=BEBVBAEV
60 opeq12 a=Bb=Eab=BE
61 60 eqeq2d a=Bb=Ex=abx=BE
62 eleq1 a=BaVBV
63 neeq1 a=BaABA
64 62 63 anbi12d a=BaVaABVBA
65 eleq1 b=EbVEV
66 64 65 bi2anan9 a=Bb=EaVaAbVBVBAEV
67 61 66 anbi12d a=Bb=Ex=abaVaAbVx=BEBVBAEV
68 67 spc2egv BVEVx=BEBVBAEVabx=abaVaAbV
69 2 4 68 syl2anc φx=BEBVBAEVabx=abaVaAbV
70 69 adantl x=BEφx=BEBVBAEVabx=abaVaAbV
71 59 70 mpd x=BEφabx=abaVaAbV
72 3 elexd φCV
73 5 elexd φFV
74 72 7 73 jca31 φCVCAFV
75 74 anim2i x=CFφx=CFCVCAFV
76 opeq12 a=Cb=Fab=CF
77 76 eqeq2d a=Cb=Fx=abx=CF
78 eleq1 a=CaVCV
79 neeq1 a=CaACA
80 78 79 anbi12d a=CaVaACVCA
81 eleq1 b=FbVFV
82 80 81 bi2anan9 a=Cb=FaVaAbVCVCAFV
83 77 82 anbi12d a=Cb=Fx=abaVaAbVx=CFCVCAFV
84 83 spc2egv CVFVx=CFCVCAFVabx=abaVaAbV
85 3 5 84 syl2anc φx=CFCVCAFVabx=abaVaAbV
86 85 adantl x=CFφx=CFCVCAFVabx=abaVaAbV
87 75 86 mpd x=CFφabx=abaVaAbV
88 71 87 jaoian x=BEx=CFφabx=abaVaAbV
89 15 anbi1i aVAbVaVaAbV
90 89 anbi2i x=abaVAbVx=abaVaAbV
91 90 2exbii abx=abaVAbVabx=abaVaAbV
92 88 91 sylibr x=BEx=CFφabx=abaVAbV
93 55 92 jca x=BEx=CFφxTabx=abaVAbV
94 93 ex x=BEx=CFφxTabx=abaVAbV
95 43 94 sylbi xBECFφxTabx=abaVAbV
96 95 com12 φxBECFxTabx=abaVAbV
97 48 96 impbid φxTabx=abaVAbVxBECF
98 11 97 bitrid φxTxVA×VxBECF
99 9 98 bitrid φxTVA×VxBECF
100 99 eqrdv φTVA×V=BECF
101 8 100 eqtrid φTVA=BECF