| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tpres.t |
|- ( ph -> T = { <. A , D >. , <. B , E >. , <. C , F >. } ) |
| 2 |
|
tpres.b |
|- ( ph -> B e. V ) |
| 3 |
|
tpres.c |
|- ( ph -> C e. V ) |
| 4 |
|
tpres.e |
|- ( ph -> E e. V ) |
| 5 |
|
tpres.f |
|- ( ph -> F e. V ) |
| 6 |
|
tpres.1 |
|- ( ph -> B =/= A ) |
| 7 |
|
tpres.2 |
|- ( ph -> C =/= A ) |
| 8 |
|
df-res |
|- ( T |` ( _V \ { A } ) ) = ( T i^i ( ( _V \ { A } ) X. _V ) ) |
| 9 |
|
elin |
|- ( x e. ( T i^i ( ( _V \ { A } ) X. _V ) ) <-> ( x e. T /\ x e. ( ( _V \ { A } ) X. _V ) ) ) |
| 10 |
|
elxp |
|- ( x e. ( ( _V \ { A } ) X. _V ) <-> E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) |
| 11 |
10
|
anbi2i |
|- ( ( x e. T /\ x e. ( ( _V \ { A } ) X. _V ) ) <-> ( x e. T /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) ) |
| 12 |
1
|
eleq2d |
|- ( ph -> ( x e. T <-> x e. { <. A , D >. , <. B , E >. , <. C , F >. } ) ) |
| 13 |
|
vex |
|- x e. _V |
| 14 |
13
|
eltp |
|- ( x e. { <. A , D >. , <. B , E >. , <. C , F >. } <-> ( x = <. A , D >. \/ x = <. B , E >. \/ x = <. C , F >. ) ) |
| 15 |
|
eldifsn |
|- ( a e. ( _V \ { A } ) <-> ( a e. _V /\ a =/= A ) ) |
| 16 |
|
eqeq1 |
|- ( x = <. a , b >. -> ( x = <. A , D >. <-> <. a , b >. = <. A , D >. ) ) |
| 17 |
16
|
adantl |
|- ( ( a =/= A /\ x = <. a , b >. ) -> ( x = <. A , D >. <-> <. a , b >. = <. A , D >. ) ) |
| 18 |
|
vex |
|- a e. _V |
| 19 |
|
vex |
|- b e. _V |
| 20 |
18 19
|
opth |
|- ( <. a , b >. = <. A , D >. <-> ( a = A /\ b = D ) ) |
| 21 |
|
eqneqall |
|- ( a = A -> ( a =/= A -> ( b = D -> ( ph -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) ) ) |
| 22 |
21
|
com12 |
|- ( a =/= A -> ( a = A -> ( b = D -> ( ph -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) ) ) |
| 23 |
22
|
impd |
|- ( a =/= A -> ( ( a = A /\ b = D ) -> ( ph -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) ) |
| 24 |
20 23
|
biimtrid |
|- ( a =/= A -> ( <. a , b >. = <. A , D >. -> ( ph -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) ) |
| 25 |
24
|
adantr |
|- ( ( a =/= A /\ x = <. a , b >. ) -> ( <. a , b >. = <. A , D >. -> ( ph -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) ) |
| 26 |
17 25
|
sylbid |
|- ( ( a =/= A /\ x = <. a , b >. ) -> ( x = <. A , D >. -> ( ph -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) ) |
| 27 |
26
|
impd |
|- ( ( a =/= A /\ x = <. a , b >. ) -> ( ( x = <. A , D >. /\ ph ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) |
| 28 |
27
|
ex |
|- ( a =/= A -> ( x = <. a , b >. -> ( ( x = <. A , D >. /\ ph ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) ) |
| 29 |
28
|
adantl |
|- ( ( a e. _V /\ a =/= A ) -> ( x = <. a , b >. -> ( ( x = <. A , D >. /\ ph ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) ) |
| 30 |
15 29
|
sylbi |
|- ( a e. ( _V \ { A } ) -> ( x = <. a , b >. -> ( ( x = <. A , D >. /\ ph ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) ) |
| 31 |
30
|
adantr |
|- ( ( a e. ( _V \ { A } ) /\ b e. _V ) -> ( x = <. a , b >. -> ( ( x = <. A , D >. /\ ph ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) ) |
| 32 |
31
|
impcom |
|- ( ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) -> ( ( x = <. A , D >. /\ ph ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) |
| 33 |
32
|
com12 |
|- ( ( x = <. A , D >. /\ ph ) -> ( ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) |
| 34 |
33
|
exlimdvv |
|- ( ( x = <. A , D >. /\ ph ) -> ( E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) |
| 35 |
34
|
ex |
|- ( x = <. A , D >. -> ( ph -> ( E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) ) |
| 36 |
35
|
impd |
|- ( x = <. A , D >. -> ( ( ph /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) |
| 37 |
|
orc |
|- ( x = <. B , E >. -> ( x = <. B , E >. \/ x = <. C , F >. ) ) |
| 38 |
37
|
a1d |
|- ( x = <. B , E >. -> ( ( ph /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) |
| 39 |
|
olc |
|- ( x = <. C , F >. -> ( x = <. B , E >. \/ x = <. C , F >. ) ) |
| 40 |
39
|
a1d |
|- ( x = <. C , F >. -> ( ( ph /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) |
| 41 |
36 38 40
|
3jaoi |
|- ( ( x = <. A , D >. \/ x = <. B , E >. \/ x = <. C , F >. ) -> ( ( ph /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) |
| 42 |
14 41
|
sylbi |
|- ( x e. { <. A , D >. , <. B , E >. , <. C , F >. } -> ( ( ph /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) |
| 43 |
13
|
elpr |
|- ( x e. { <. B , E >. , <. C , F >. } <-> ( x = <. B , E >. \/ x = <. C , F >. ) ) |
| 44 |
42 43
|
imbitrrdi |
|- ( x e. { <. A , D >. , <. B , E >. , <. C , F >. } -> ( ( ph /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) -> x e. { <. B , E >. , <. C , F >. } ) ) |
| 45 |
44
|
expd |
|- ( x e. { <. A , D >. , <. B , E >. , <. C , F >. } -> ( ph -> ( E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) -> x e. { <. B , E >. , <. C , F >. } ) ) ) |
| 46 |
45
|
com12 |
|- ( ph -> ( x e. { <. A , D >. , <. B , E >. , <. C , F >. } -> ( E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) -> x e. { <. B , E >. , <. C , F >. } ) ) ) |
| 47 |
12 46
|
sylbid |
|- ( ph -> ( x e. T -> ( E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) -> x e. { <. B , E >. , <. C , F >. } ) ) ) |
| 48 |
47
|
impd |
|- ( ph -> ( ( x e. T /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) -> x e. { <. B , E >. , <. C , F >. } ) ) |
| 49 |
|
3mix2 |
|- ( x = <. B , E >. -> ( x = <. A , D >. \/ x = <. B , E >. \/ x = <. C , F >. ) ) |
| 50 |
|
3mix3 |
|- ( x = <. C , F >. -> ( x = <. A , D >. \/ x = <. B , E >. \/ x = <. C , F >. ) ) |
| 51 |
49 50
|
jaoi |
|- ( ( x = <. B , E >. \/ x = <. C , F >. ) -> ( x = <. A , D >. \/ x = <. B , E >. \/ x = <. C , F >. ) ) |
| 52 |
51
|
adantr |
|- ( ( ( x = <. B , E >. \/ x = <. C , F >. ) /\ ph ) -> ( x = <. A , D >. \/ x = <. B , E >. \/ x = <. C , F >. ) ) |
| 53 |
12 14
|
bitrdi |
|- ( ph -> ( x e. T <-> ( x = <. A , D >. \/ x = <. B , E >. \/ x = <. C , F >. ) ) ) |
| 54 |
53
|
adantl |
|- ( ( ( x = <. B , E >. \/ x = <. C , F >. ) /\ ph ) -> ( x e. T <-> ( x = <. A , D >. \/ x = <. B , E >. \/ x = <. C , F >. ) ) ) |
| 55 |
52 54
|
mpbird |
|- ( ( ( x = <. B , E >. \/ x = <. C , F >. ) /\ ph ) -> x e. T ) |
| 56 |
2
|
elexd |
|- ( ph -> B e. _V ) |
| 57 |
4
|
elexd |
|- ( ph -> E e. _V ) |
| 58 |
56 6 57
|
jca31 |
|- ( ph -> ( ( B e. _V /\ B =/= A ) /\ E e. _V ) ) |
| 59 |
58
|
anim2i |
|- ( ( x = <. B , E >. /\ ph ) -> ( x = <. B , E >. /\ ( ( B e. _V /\ B =/= A ) /\ E e. _V ) ) ) |
| 60 |
|
opeq12 |
|- ( ( a = B /\ b = E ) -> <. a , b >. = <. B , E >. ) |
| 61 |
60
|
eqeq2d |
|- ( ( a = B /\ b = E ) -> ( x = <. a , b >. <-> x = <. B , E >. ) ) |
| 62 |
|
eleq1 |
|- ( a = B -> ( a e. _V <-> B e. _V ) ) |
| 63 |
|
neeq1 |
|- ( a = B -> ( a =/= A <-> B =/= A ) ) |
| 64 |
62 63
|
anbi12d |
|- ( a = B -> ( ( a e. _V /\ a =/= A ) <-> ( B e. _V /\ B =/= A ) ) ) |
| 65 |
|
eleq1 |
|- ( b = E -> ( b e. _V <-> E e. _V ) ) |
| 66 |
64 65
|
bi2anan9 |
|- ( ( a = B /\ b = E ) -> ( ( ( a e. _V /\ a =/= A ) /\ b e. _V ) <-> ( ( B e. _V /\ B =/= A ) /\ E e. _V ) ) ) |
| 67 |
61 66
|
anbi12d |
|- ( ( a = B /\ b = E ) -> ( ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) <-> ( x = <. B , E >. /\ ( ( B e. _V /\ B =/= A ) /\ E e. _V ) ) ) ) |
| 68 |
67
|
spc2egv |
|- ( ( B e. V /\ E e. V ) -> ( ( x = <. B , E >. /\ ( ( B e. _V /\ B =/= A ) /\ E e. _V ) ) -> E. a E. b ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) ) ) |
| 69 |
2 4 68
|
syl2anc |
|- ( ph -> ( ( x = <. B , E >. /\ ( ( B e. _V /\ B =/= A ) /\ E e. _V ) ) -> E. a E. b ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) ) ) |
| 70 |
69
|
adantl |
|- ( ( x = <. B , E >. /\ ph ) -> ( ( x = <. B , E >. /\ ( ( B e. _V /\ B =/= A ) /\ E e. _V ) ) -> E. a E. b ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) ) ) |
| 71 |
59 70
|
mpd |
|- ( ( x = <. B , E >. /\ ph ) -> E. a E. b ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) ) |
| 72 |
3
|
elexd |
|- ( ph -> C e. _V ) |
| 73 |
5
|
elexd |
|- ( ph -> F e. _V ) |
| 74 |
72 7 73
|
jca31 |
|- ( ph -> ( ( C e. _V /\ C =/= A ) /\ F e. _V ) ) |
| 75 |
74
|
anim2i |
|- ( ( x = <. C , F >. /\ ph ) -> ( x = <. C , F >. /\ ( ( C e. _V /\ C =/= A ) /\ F e. _V ) ) ) |
| 76 |
|
opeq12 |
|- ( ( a = C /\ b = F ) -> <. a , b >. = <. C , F >. ) |
| 77 |
76
|
eqeq2d |
|- ( ( a = C /\ b = F ) -> ( x = <. a , b >. <-> x = <. C , F >. ) ) |
| 78 |
|
eleq1 |
|- ( a = C -> ( a e. _V <-> C e. _V ) ) |
| 79 |
|
neeq1 |
|- ( a = C -> ( a =/= A <-> C =/= A ) ) |
| 80 |
78 79
|
anbi12d |
|- ( a = C -> ( ( a e. _V /\ a =/= A ) <-> ( C e. _V /\ C =/= A ) ) ) |
| 81 |
|
eleq1 |
|- ( b = F -> ( b e. _V <-> F e. _V ) ) |
| 82 |
80 81
|
bi2anan9 |
|- ( ( a = C /\ b = F ) -> ( ( ( a e. _V /\ a =/= A ) /\ b e. _V ) <-> ( ( C e. _V /\ C =/= A ) /\ F e. _V ) ) ) |
| 83 |
77 82
|
anbi12d |
|- ( ( a = C /\ b = F ) -> ( ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) <-> ( x = <. C , F >. /\ ( ( C e. _V /\ C =/= A ) /\ F e. _V ) ) ) ) |
| 84 |
83
|
spc2egv |
|- ( ( C e. V /\ F e. V ) -> ( ( x = <. C , F >. /\ ( ( C e. _V /\ C =/= A ) /\ F e. _V ) ) -> E. a E. b ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) ) ) |
| 85 |
3 5 84
|
syl2anc |
|- ( ph -> ( ( x = <. C , F >. /\ ( ( C e. _V /\ C =/= A ) /\ F e. _V ) ) -> E. a E. b ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) ) ) |
| 86 |
85
|
adantl |
|- ( ( x = <. C , F >. /\ ph ) -> ( ( x = <. C , F >. /\ ( ( C e. _V /\ C =/= A ) /\ F e. _V ) ) -> E. a E. b ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) ) ) |
| 87 |
75 86
|
mpd |
|- ( ( x = <. C , F >. /\ ph ) -> E. a E. b ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) ) |
| 88 |
71 87
|
jaoian |
|- ( ( ( x = <. B , E >. \/ x = <. C , F >. ) /\ ph ) -> E. a E. b ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) ) |
| 89 |
15
|
anbi1i |
|- ( ( a e. ( _V \ { A } ) /\ b e. _V ) <-> ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) |
| 90 |
89
|
anbi2i |
|- ( ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) <-> ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) ) |
| 91 |
90
|
2exbii |
|- ( E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) <-> E. a E. b ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) ) |
| 92 |
88 91
|
sylibr |
|- ( ( ( x = <. B , E >. \/ x = <. C , F >. ) /\ ph ) -> E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) |
| 93 |
55 92
|
jca |
|- ( ( ( x = <. B , E >. \/ x = <. C , F >. ) /\ ph ) -> ( x e. T /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) ) |
| 94 |
93
|
ex |
|- ( ( x = <. B , E >. \/ x = <. C , F >. ) -> ( ph -> ( x e. T /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) ) ) |
| 95 |
43 94
|
sylbi |
|- ( x e. { <. B , E >. , <. C , F >. } -> ( ph -> ( x e. T /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) ) ) |
| 96 |
95
|
com12 |
|- ( ph -> ( x e. { <. B , E >. , <. C , F >. } -> ( x e. T /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) ) ) |
| 97 |
48 96
|
impbid |
|- ( ph -> ( ( x e. T /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) <-> x e. { <. B , E >. , <. C , F >. } ) ) |
| 98 |
11 97
|
bitrid |
|- ( ph -> ( ( x e. T /\ x e. ( ( _V \ { A } ) X. _V ) ) <-> x e. { <. B , E >. , <. C , F >. } ) ) |
| 99 |
9 98
|
bitrid |
|- ( ph -> ( x e. ( T i^i ( ( _V \ { A } ) X. _V ) ) <-> x e. { <. B , E >. , <. C , F >. } ) ) |
| 100 |
99
|
eqrdv |
|- ( ph -> ( T i^i ( ( _V \ { A } ) X. _V ) ) = { <. B , E >. , <. C , F >. } ) |
| 101 |
8 100
|
eqtrid |
|- ( ph -> ( T |` ( _V \ { A } ) ) = { <. B , E >. , <. C , F >. } ) |