Description: Re-index an extended sum using a bijection. (Contributed by Thierry Arnoux, 6-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | esumf1o.0 | |
|
esumf1o.b | |
||
esumf1o.d | |
||
esumf1o.a | |
||
esumf1o.c | |
||
esumf1o.f | |
||
esumf1o.1 | |
||
esumf1o.2 | |
||
esumf1o.3 | |
||
esumf1o.4 | |
||
esumf1o.5 | |
||
Assertion | esumf1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumf1o.0 | |
|
2 | esumf1o.b | |
|
3 | esumf1o.d | |
|
4 | esumf1o.a | |
|
5 | esumf1o.c | |
|
6 | esumf1o.f | |
|
7 | esumf1o.1 | |
|
8 | esumf1o.2 | |
|
9 | esumf1o.3 | |
|
10 | esumf1o.4 | |
|
11 | esumf1o.5 | |
|
12 | xrge0base | |
|
13 | xrge0cmn | |
|
14 | 13 | a1i | |
15 | xrge0tps | |
|
16 | 15 | a1i | |
17 | 11 | fmpttd | |
18 | 12 14 16 8 17 9 | tsmsf1o | |
19 | f1of | |
|
20 | 9 19 | syl | |
21 | 20 | ffvelcdmda | |
22 | 10 21 | eqeltrrd | |
23 | 22 | ex | |
24 | 1 23 | ralrimi | |
25 | 5 6 20 | feqmptdf | |
26 | 1 10 | mpteq2da | |
27 | 25 26 | eqtrd | |
28 | eqidd | |
|
29 | 2 3 5 4 1 24 27 28 7 | fmptcof2 | |
30 | 29 | oveq2d | |
31 | 18 30 | eqtrd | |
32 | 31 | unieqd | |
33 | df-esum | |
|
34 | df-esum | |
|
35 | 32 33 34 | 3eqtr4g | |