Metamath Proof Explorer


Theorem esumpr2

Description: Extended sum over a pair, with a relaxed condition compared to esumpr . (Contributed by Thierry Arnoux, 2-Jan-2017)

Ref Expression
Hypotheses esumpr.1 φk=AC=D
esumpr.2 φk=BC=E
esumpr.3 φAV
esumpr.4 φBW
esumpr.5 φD0+∞
esumpr.6 φE0+∞
esumpr2.1 φA=BD=0D=+∞
Assertion esumpr2 φ*kABC=D+𝑒E

Proof

Step Hyp Ref Expression
1 esumpr.1 φk=AC=D
2 esumpr.2 φk=BC=E
3 esumpr.3 φAV
4 esumpr.4 φBW
5 esumpr.5 φD0+∞
6 esumpr.6 φE0+∞
7 esumpr2.1 φA=BD=0D=+∞
8 simpr φA=BA=B
9 dfsn2 A=AA
10 preq2 A=BAA=AB
11 9 10 eqtr2id A=BAB=A
12 esumeq1 AB=A*kABC=*kAC
13 8 11 12 3syl φA=B*kABC=*kAC
14 1 3 5 esumsn φ*kAC=D
15 14 adantr φA=B*kAC=D
16 13 15 eqtrd φA=B*kABC=D
17 oveq2 D=0D+𝑒D=D+𝑒0
18 0xr 0*
19 eleq1 D=0D*0*
20 18 19 mpbiri D=0D*
21 xaddrid D*D+𝑒0=D
22 20 21 syl D=0D+𝑒0=D
23 17 22 eqtrd D=0D+𝑒D=D
24 pnfxr +∞*
25 eleq1 D=+∞D*+∞*
26 24 25 mpbiri D=+∞D*
27 pnfnemnf +∞−∞
28 neeq1 D=+∞D−∞+∞−∞
29 27 28 mpbiri D=+∞D−∞
30 xaddpnf1 D*D−∞D+𝑒+∞=+∞
31 26 29 30 syl2anc D=+∞D+𝑒+∞=+∞
32 oveq2 D=+∞D+𝑒D=D+𝑒+∞
33 id D=+∞D=+∞
34 31 32 33 3eqtr4d D=+∞D+𝑒D=D
35 23 34 jaoi D=0D=+∞D+𝑒D=D
36 7 35 syl6 φA=BD+𝑒D=D
37 36 imp φA=BD+𝑒D=D
38 simpll φA=Bk=Bφ
39 eqeq2 A=Bk=Ak=B
40 39 biimprd A=Bk=Bk=A
41 8 40 syl φA=Bk=Bk=A
42 41 imp φA=Bk=Bk=A
43 38 42 1 syl2anc φA=Bk=BC=D
44 4 adantr φA=BBW
45 5 adantr φA=BD0+∞
46 43 44 45 esumsn φA=B*kBC=D
47 2 4 6 esumsn φ*kBC=E
48 47 adantr φA=B*kBC=E
49 46 48 eqtr3d φA=BD=E
50 49 oveq2d φA=BD+𝑒D=D+𝑒E
51 16 37 50 3eqtr2d φA=B*kABC=D+𝑒E
52 1 adantlr φABk=AC=D
53 2 adantlr φABk=BC=E
54 3 adantr φABAV
55 4 adantr φABBW
56 5 adantr φABD0+∞
57 6 adantr φABE0+∞
58 simpr φABAB
59 52 53 54 55 56 57 58 esumpr φAB*kABC=D+𝑒E
60 51 59 pm2.61dane φ*kABC=D+𝑒E