| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumpr.1 |
|
| 2 |
|
esumpr.2 |
|
| 3 |
|
esumpr.3 |
|
| 4 |
|
esumpr.4 |
|
| 5 |
|
esumpr.5 |
|
| 6 |
|
esumpr.6 |
|
| 7 |
|
esumpr2.1 |
|
| 8 |
|
simpr |
|
| 9 |
|
dfsn2 |
|
| 10 |
|
preq2 |
|
| 11 |
9 10
|
eqtr2id |
|
| 12 |
|
esumeq1 |
|
| 13 |
8 11 12
|
3syl |
|
| 14 |
1 3 5
|
esumsn |
|
| 15 |
14
|
adantr |
|
| 16 |
13 15
|
eqtrd |
|
| 17 |
|
oveq2 |
|
| 18 |
|
0xr |
|
| 19 |
|
eleq1 |
|
| 20 |
18 19
|
mpbiri |
|
| 21 |
|
xaddrid |
|
| 22 |
20 21
|
syl |
|
| 23 |
17 22
|
eqtrd |
|
| 24 |
|
pnfxr |
|
| 25 |
|
eleq1 |
|
| 26 |
24 25
|
mpbiri |
|
| 27 |
|
pnfnemnf |
|
| 28 |
|
neeq1 |
|
| 29 |
27 28
|
mpbiri |
|
| 30 |
|
xaddpnf1 |
|
| 31 |
26 29 30
|
syl2anc |
|
| 32 |
|
oveq2 |
|
| 33 |
|
id |
|
| 34 |
31 32 33
|
3eqtr4d |
|
| 35 |
23 34
|
jaoi |
|
| 36 |
7 35
|
syl6 |
|
| 37 |
36
|
imp |
|
| 38 |
|
simpll |
|
| 39 |
|
eqeq2 |
|
| 40 |
39
|
biimprd |
|
| 41 |
8 40
|
syl |
|
| 42 |
41
|
imp |
|
| 43 |
38 42 1
|
syl2anc |
|
| 44 |
4
|
adantr |
|
| 45 |
5
|
adantr |
|
| 46 |
43 44 45
|
esumsn |
|
| 47 |
2 4 6
|
esumsn |
|
| 48 |
47
|
adantr |
|
| 49 |
46 48
|
eqtr3d |
|
| 50 |
49
|
oveq2d |
|
| 51 |
16 37 50
|
3eqtr2d |
|
| 52 |
1
|
adantlr |
|
| 53 |
2
|
adantlr |
|
| 54 |
3
|
adantr |
|
| 55 |
4
|
adantr |
|
| 56 |
5
|
adantr |
|
| 57 |
6
|
adantr |
|
| 58 |
|
simpr |
|
| 59 |
52 53 54 55 56 57 58
|
esumpr |
|
| 60 |
51 59
|
pm2.61dane |
|