Description: Extended sum over a pair, with a relaxed condition compared to esumpr . (Contributed by Thierry Arnoux, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | esumpr.1 | |
|
esumpr.2 | |
||
esumpr.3 | |
||
esumpr.4 | |
||
esumpr.5 | |
||
esumpr.6 | |
||
esumpr2.1 | |
||
Assertion | esumpr2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumpr.1 | |
|
2 | esumpr.2 | |
|
3 | esumpr.3 | |
|
4 | esumpr.4 | |
|
5 | esumpr.5 | |
|
6 | esumpr.6 | |
|
7 | esumpr2.1 | |
|
8 | simpr | |
|
9 | dfsn2 | |
|
10 | preq2 | |
|
11 | 9 10 | eqtr2id | |
12 | esumeq1 | |
|
13 | 8 11 12 | 3syl | |
14 | 1 3 5 | esumsn | |
15 | 14 | adantr | |
16 | 13 15 | eqtrd | |
17 | oveq2 | |
|
18 | 0xr | |
|
19 | eleq1 | |
|
20 | 18 19 | mpbiri | |
21 | xaddrid | |
|
22 | 20 21 | syl | |
23 | 17 22 | eqtrd | |
24 | pnfxr | |
|
25 | eleq1 | |
|
26 | 24 25 | mpbiri | |
27 | pnfnemnf | |
|
28 | neeq1 | |
|
29 | 27 28 | mpbiri | |
30 | xaddpnf1 | |
|
31 | 26 29 30 | syl2anc | |
32 | oveq2 | |
|
33 | id | |
|
34 | 31 32 33 | 3eqtr4d | |
35 | 23 34 | jaoi | |
36 | 7 35 | syl6 | |
37 | 36 | imp | |
38 | simpll | |
|
39 | eqeq2 | |
|
40 | 39 | biimprd | |
41 | 8 40 | syl | |
42 | 41 | imp | |
43 | 38 42 1 | syl2anc | |
44 | 4 | adantr | |
45 | 5 | adantr | |
46 | 43 44 45 | esumsn | |
47 | 2 4 6 | esumsn | |
48 | 47 | adantr | |
49 | 46 48 | eqtr3d | |
50 | 49 | oveq2d | |
51 | 16 37 50 | 3eqtr2d | |
52 | 1 | adantlr | |
53 | 2 | adantlr | |
54 | 3 | adantr | |
55 | 4 | adantr | |
56 | 5 | adantr | |
57 | 6 | adantr | |
58 | simpr | |
|
59 | 52 53 54 55 56 57 58 | esumpr | |
60 | 51 59 | pm2.61dane | |