Description: Lemma for eulerth . (Contributed by Mario Carneiro, 8-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eulerth.1 | |
|
eulerth.2 | |
||
eulerth.3 | |
||
eulerth.4 | |
||
eulerth.5 | |
||
Assertion | eulerthlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eulerth.1 | |
|
2 | eulerth.2 | |
|
3 | eulerth.3 | |
|
4 | eulerth.4 | |
|
5 | eulerth.5 | |
|
6 | 1 | simp2d | |
7 | 6 | adantr | |
8 | f1of | |
|
9 | 4 8 | syl | |
10 | 9 | ffvelcdmda | |
11 | oveq1 | |
|
12 | 11 | eqeq1d | |
13 | 12 2 | elrab2 | |
14 | 10 13 | sylib | |
15 | 14 | simpld | |
16 | elfzoelz | |
|
17 | 15 16 | syl | |
18 | 7 17 | zmulcld | |
19 | 1 | simp1d | |
20 | 19 | adantr | |
21 | zmodfzo | |
|
22 | 18 20 21 | syl2anc | |
23 | modgcd | |
|
24 | 18 20 23 | syl2anc | |
25 | 19 | nnzd | |
26 | 25 | adantr | |
27 | 18 26 | gcdcomd | |
28 | 25 6 | gcdcomd | |
29 | 1 | simp3d | |
30 | 28 29 | eqtrd | |
31 | 30 | adantr | |
32 | 26 17 | gcdcomd | |
33 | 14 | simprd | |
34 | 32 33 | eqtrd | |
35 | rpmul | |
|
36 | 26 7 17 35 | syl3anc | |
37 | 31 34 36 | mp2and | |
38 | 24 27 37 | 3eqtrd | |
39 | oveq1 | |
|
40 | 39 | eqeq1d | |
41 | 40 2 | elrab2 | |
42 | 22 38 41 | sylanbrc | |
43 | 42 5 | fmptd | |