Metamath Proof Explorer


Theorem eupthp1

Description: Append one path segment to an Eulerian path <. F , P >. to become an Eulerian path <. H , Q >. of the supergraph S obtained by adding the new edge to the graph G . (Contributed by Mario Carneiro, 7-Apr-2015) (Revised by AV, 7-Mar-2021) (Proof shortened by AV, 30-Oct-2021) (Revised by AV, 8-Apr-2024)

Ref Expression
Hypotheses eupthp1.v V=VtxG
eupthp1.i I=iEdgG
eupthp1.f φFunI
eupthp1.a φIFin
eupthp1.b φBW
eupthp1.c φCV
eupthp1.d φ¬BdomI
eupthp1.p φFEulerPathsGP
eupthp1.n N=F
eupthp1.e φEEdgG
eupthp1.x φPNCE
eupthp1.u iEdgS=IBE
eupthp1.h H=FNB
eupthp1.q Q=PN+1C
eupthp1.s VtxS=V
eupthp1.l φC=PNE=C
Assertion eupthp1 φHEulerPathsSQ

Proof

Step Hyp Ref Expression
1 eupthp1.v V=VtxG
2 eupthp1.i I=iEdgG
3 eupthp1.f φFunI
4 eupthp1.a φIFin
5 eupthp1.b φBW
6 eupthp1.c φCV
7 eupthp1.d φ¬BdomI
8 eupthp1.p φFEulerPathsGP
9 eupthp1.n N=F
10 eupthp1.e φEEdgG
11 eupthp1.x φPNCE
12 eupthp1.u iEdgS=IBE
13 eupthp1.h H=FNB
14 eupthp1.q Q=PN+1C
15 eupthp1.s VtxS=V
16 eupthp1.l φC=PNE=C
17 eupthiswlk FEulerPathsGPFWalksGP
18 8 17 syl φFWalksGP
19 12 a1i φiEdgS=IBE
20 15 a1i φVtxS=V
21 1 2 3 4 5 6 7 18 9 10 11 19 13 14 20 16 wlkp1 φHWalksSQ
22 2 eupthi FEulerPathsGPFWalksGPF:0..^F1-1 ontodomI
23 9 eqcomi F=N
24 23 oveq2i 0..^F=0..^N
25 f1oeq2 0..^F=0..^NF:0..^F1-1 ontodomIF:0..^N1-1 ontodomI
26 24 25 ax-mp F:0..^F1-1 ontodomIF:0..^N1-1 ontodomI
27 26 biimpi F:0..^F1-1 ontodomIF:0..^N1-1 ontodomI
28 27 adantl FWalksGPF:0..^F1-1 ontodomIF:0..^N1-1 ontodomI
29 8 22 28 3syl φF:0..^N1-1 ontodomI
30 9 fvexi NV
31 f1osng NVBWNB:N1-1 ontoB
32 30 5 31 sylancr φNB:N1-1 ontoB
33 dmsnopg EEdgGdomBE=B
34 10 33 syl φdomBE=B
35 34 f1oeq3d φNB:N1-1 ontodomBENB:N1-1 ontoB
36 32 35 mpbird φNB:N1-1 ontodomBE
37 fzodisjsn 0..^NN=
38 37 a1i φ0..^NN=
39 34 ineq2d φdomIdomBE=domIB
40 disjsn domIB=¬BdomI
41 7 40 sylibr φdomIB=
42 39 41 eqtrd φdomIdomBE=
43 f1oun F:0..^N1-1 ontodomINB:N1-1 ontodomBE0..^NN=domIdomBE=FNB:0..^NN1-1 ontodomIdomBE
44 29 36 38 42 43 syl22anc φFNB:0..^NN1-1 ontodomIdomBE
45 13 a1i φH=FNB
46 1 2 3 4 5 6 7 18 9 10 11 19 13 wlkp1lem2 φH=N+1
47 46 oveq2d φ0..^H=0..^N+1
48 wlkcl FWalksGPF0
49 9 eleq1i N0F0
50 elnn0uz N0N0
51 49 50 sylbb1 F0N0
52 48 51 syl FWalksGPN0
53 8 17 52 3syl φN0
54 fzosplitsn N00..^N+1=0..^NN
55 53 54 syl φ0..^N+1=0..^NN
56 47 55 eqtrd φ0..^H=0..^NN
57 dmun domIBE=domIdomBE
58 57 a1i φdomIBE=domIdomBE
59 45 56 58 f1oeq123d φH:0..^H1-1 ontodomIBEFNB:0..^NN1-1 ontodomIdomBE
60 44 59 mpbird φH:0..^H1-1 ontodomIBE
61 12 eqcomi IBE=iEdgS
62 61 iseupthf1o HEulerPathsSQHWalksSQH:0..^H1-1 ontodomIBE
63 21 60 62 sylanbrc φHEulerPathsSQ