Metamath Proof Explorer


Theorem even3prm2

Description: If an even number is the sum of three prime numbers, one of the prime numbers must be 2. (Contributed by AV, 25-Dec-2021)

Ref Expression
Assertion even3prm2 NEvenPQRN=P+Q+RP=2Q=2R=2

Proof

Step Hyp Ref Expression
1 olc R=2P=2Q=2R=2
2 1 a1d R=2NEvenPQRN=P+Q+RP=2Q=2R=2
3 df-ne R2¬R=2
4 eldifsn R2RR2
5 oddprmALTV R2ROdd
6 emoo NEvenROddNROdd
7 6 expcom ROddNEvenNROdd
8 5 7 syl R2NEvenNROdd
9 4 8 sylbir RR2NEvenNROdd
10 9 ex RR2NEvenNROdd
11 3 10 biimtrrid R¬R=2NEvenNROdd
12 11 com23 RNEven¬R=2NROdd
13 12 3ad2ant3 PQRNEven¬R=2NROdd
14 13 impcom NEvenPQR¬R=2NROdd
15 14 3adant3 NEvenPQRN=P+Q+R¬R=2NROdd
16 15 impcom ¬R=2NEvenPQRN=P+Q+RNROdd
17 3simpa PQRPQ
18 17 3ad2ant2 NEvenPQRN=P+Q+RPQ
19 18 adantl ¬R=2NEvenPQRN=P+Q+RPQ
20 eqcom N=P+Q+RP+Q+R=N
21 evenz NEvenN
22 21 zcnd NEvenN
23 22 adantr NEvenPQRN
24 prmz RR
25 24 zcnd RR
26 25 3ad2ant3 PQRR
27 26 adantl NEvenPQRR
28 prmz PP
29 prmz QQ
30 zaddcl PQP+Q
31 28 29 30 syl2an PQP+Q
32 31 zcnd PQP+Q
33 32 3adant3 PQRP+Q
34 33 adantl NEvenPQRP+Q
35 23 27 34 subadd2d NEvenPQRNR=P+QP+Q+R=N
36 35 biimprd NEvenPQRP+Q+R=NNR=P+Q
37 20 36 biimtrid NEvenPQRN=P+Q+RNR=P+Q
38 37 3impia NEvenPQRN=P+Q+RNR=P+Q
39 38 adantl ¬R=2NEvenPQRN=P+Q+RNR=P+Q
40 odd2prm2 NROddPQNR=P+QP=2Q=2
41 16 19 39 40 syl3anc ¬R=2NEvenPQRN=P+Q+RP=2Q=2
42 41 orcd ¬R=2NEvenPQRN=P+Q+RP=2Q=2R=2
43 42 ex ¬R=2NEvenPQRN=P+Q+RP=2Q=2R=2
44 2 43 pm2.61i NEvenPQRN=P+Q+RP=2Q=2R=2
45 df-3or P=2Q=2R=2P=2Q=2R=2
46 44 45 sylibr NEvenPQRN=P+Q+RP=2Q=2R=2