Metamath Proof Explorer


Theorem evl1val

Description: Value of the simple/same ring evaluation map. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses evl1fval.o O = eval 1 R
evl1fval.q Q = 1 𝑜 eval R
evl1fval.b B = Base R
evl1val.m M = 1 𝑜 mPoly R
evl1val.k K = Base M
Assertion evl1val R CRing A K O A = Q A y B 1 𝑜 × y

Proof

Step Hyp Ref Expression
1 evl1fval.o O = eval 1 R
2 evl1fval.q Q = 1 𝑜 eval R
3 evl1fval.b B = Base R
4 evl1val.m M = 1 𝑜 mPoly R
5 evl1val.k K = Base M
6 1 2 3 evl1fval O = x B B 1 𝑜 x y B 1 𝑜 × y Q
7 6 fveq1i O A = x B B 1 𝑜 x y B 1 𝑜 × y Q A
8 1on 1 𝑜 On
9 simpl R CRing A K R CRing
10 eqid R 𝑠 B 1 𝑜 = R 𝑠 B 1 𝑜
11 2 3 4 10 evlrhm 1 𝑜 On R CRing Q M RingHom R 𝑠 B 1 𝑜
12 8 9 11 sylancr R CRing A K Q M RingHom R 𝑠 B 1 𝑜
13 eqid Base R 𝑠 B 1 𝑜 = Base R 𝑠 B 1 𝑜
14 5 13 rhmf Q M RingHom R 𝑠 B 1 𝑜 Q : K Base R 𝑠 B 1 𝑜
15 12 14 syl R CRing A K Q : K Base R 𝑠 B 1 𝑜
16 fvco3 Q : K Base R 𝑠 B 1 𝑜 A K x B B 1 𝑜 x y B 1 𝑜 × y Q A = x B B 1 𝑜 x y B 1 𝑜 × y Q A
17 15 16 sylancom R CRing A K x B B 1 𝑜 x y B 1 𝑜 × y Q A = x B B 1 𝑜 x y B 1 𝑜 × y Q A
18 7 17 eqtrid R CRing A K O A = x B B 1 𝑜 x y B 1 𝑜 × y Q A
19 ffvelrn Q : K Base R 𝑠 B 1 𝑜 A K Q A Base R 𝑠 B 1 𝑜
20 15 19 sylancom R CRing A K Q A Base R 𝑠 B 1 𝑜
21 crngring R CRing R Ring
22 21 adantr R CRing A K R Ring
23 ovex B 1 𝑜 V
24 10 3 pwsbas R Ring B 1 𝑜 V B B 1 𝑜 = Base R 𝑠 B 1 𝑜
25 22 23 24 sylancl R CRing A K B B 1 𝑜 = Base R 𝑠 B 1 𝑜
26 20 25 eleqtrrd R CRing A K Q A B B 1 𝑜
27 coeq1 x = Q A x y B 1 𝑜 × y = Q A y B 1 𝑜 × y
28 eqid x B B 1 𝑜 x y B 1 𝑜 × y = x B B 1 𝑜 x y B 1 𝑜 × y
29 fvex Q A V
30 3 fvexi B V
31 30 mptex y B 1 𝑜 × y V
32 29 31 coex Q A y B 1 𝑜 × y V
33 27 28 32 fvmpt Q A B B 1 𝑜 x B B 1 𝑜 x y B 1 𝑜 × y Q A = Q A y B 1 𝑜 × y
34 26 33 syl R CRing A K x B B 1 𝑜 x y B 1 𝑜 × y Q A = Q A y B 1 𝑜 × y
35 18 34 eqtrd R CRing A K O A = Q A y B 1 𝑜 × y