Metamath Proof Explorer


Theorem evl1val

Description: Value of the simple/same ring evaluation map. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses evl1fval.o O=eval1R
evl1fval.q Q=1𝑜evalR
evl1fval.b B=BaseR
evl1val.m M=1𝑜mPolyR
evl1val.k K=BaseM
Assertion evl1val RCRingAKOA=QAyB1𝑜×y

Proof

Step Hyp Ref Expression
1 evl1fval.o O=eval1R
2 evl1fval.q Q=1𝑜evalR
3 evl1fval.b B=BaseR
4 evl1val.m M=1𝑜mPolyR
5 evl1val.k K=BaseM
6 1 2 3 evl1fval O=xBB1𝑜xyB1𝑜×yQ
7 6 fveq1i OA=xBB1𝑜xyB1𝑜×yQA
8 1on 1𝑜On
9 simpl RCRingAKRCRing
10 eqid R𝑠B1𝑜=R𝑠B1𝑜
11 2 3 4 10 evlrhm 1𝑜OnRCRingQMRingHomR𝑠B1𝑜
12 8 9 11 sylancr RCRingAKQMRingHomR𝑠B1𝑜
13 eqid BaseR𝑠B1𝑜=BaseR𝑠B1𝑜
14 5 13 rhmf QMRingHomR𝑠B1𝑜Q:KBaseR𝑠B1𝑜
15 12 14 syl RCRingAKQ:KBaseR𝑠B1𝑜
16 fvco3 Q:KBaseR𝑠B1𝑜AKxBB1𝑜xyB1𝑜×yQA=xBB1𝑜xyB1𝑜×yQA
17 15 16 sylancom RCRingAKxBB1𝑜xyB1𝑜×yQA=xBB1𝑜xyB1𝑜×yQA
18 7 17 eqtrid RCRingAKOA=xBB1𝑜xyB1𝑜×yQA
19 ffvelcdm Q:KBaseR𝑠B1𝑜AKQABaseR𝑠B1𝑜
20 15 19 sylancom RCRingAKQABaseR𝑠B1𝑜
21 crngring RCRingRRing
22 21 adantr RCRingAKRRing
23 ovex B1𝑜V
24 10 3 pwsbas RRingB1𝑜VBB1𝑜=BaseR𝑠B1𝑜
25 22 23 24 sylancl RCRingAKBB1𝑜=BaseR𝑠B1𝑜
26 20 25 eleqtrrd RCRingAKQABB1𝑜
27 coeq1 x=QAxyB1𝑜×y=QAyB1𝑜×y
28 eqid xBB1𝑜xyB1𝑜×y=xBB1𝑜xyB1𝑜×y
29 fvex QAV
30 3 fvexi BV
31 30 mptex yB1𝑜×yV
32 29 31 coex QAyB1𝑜×yV
33 27 28 32 fvmpt QABB1𝑜xBB1𝑜xyB1𝑜×yQA=QAyB1𝑜×y
34 26 33 syl RCRingAKxBB1𝑜xyB1𝑜×yQA=QAyB1𝑜×y
35 18 34 eqtrd RCRingAKOA=QAyB1𝑜×y