Metamath Proof Explorer


Theorem evls1var

Description: Univariate polynomial evaluation for subrings maps the variable to the identity function. (Contributed by AV, 13-Sep-2019)

Ref Expression
Hypotheses evls1var.q Q=SevalSub1R
evls1var.x X=var1U
evls1var.u U=S𝑠R
evls1var.b B=BaseS
evls1var.s φSCRing
evls1var.r φRSubRingS
Assertion evls1var φQX=IB

Proof

Step Hyp Ref Expression
1 evls1var.q Q=SevalSub1R
2 evls1var.x X=var1U
3 evls1var.u U=S𝑠R
4 evls1var.b B=BaseS
5 evls1var.s φSCRing
6 evls1var.r φRSubRingS
7 eqid var1S=var1S
8 7 6 3 subrgvr1 φvar1S=var1U
9 2 8 eqtr4id φX=var1S
10 9 fveq2d φQX=Qvar1S
11 eqid 1𝑜evalSubSR=1𝑜evalSubSR
12 eqid 1𝑜evalS=1𝑜evalS
13 eqid 1𝑜mVarU=1𝑜mVarU
14 1on 1𝑜On
15 14 a1i φ1𝑜On
16 0lt1o 1𝑜
17 16 a1i φ1𝑜
18 11 12 13 3 4 15 5 6 17 evlsvarsrng φ1𝑜evalSubSR1𝑜mVarU=1𝑜evalS1𝑜mVarU
19 7 vr1val var1S=1𝑜mVarS
20 eqid 1𝑜mVarS=1𝑜mVarS
21 20 15 6 3 subrgmvr φ1𝑜mVarS=1𝑜mVarU
22 21 fveq1d φ1𝑜mVarS=1𝑜mVarU
23 19 22 eqtrid φvar1S=1𝑜mVarU
24 23 fveq2d φ1𝑜evalSubSRvar1S=1𝑜evalSubSR1𝑜mVarU
25 23 fveq2d φ1𝑜evalSvar1S=1𝑜evalS1𝑜mVarU
26 18 24 25 3eqtr4d φ1𝑜evalSubSRvar1S=1𝑜evalSvar1S
27 26 coeq1d φ1𝑜evalSubSRvar1SyB1𝑜×y=1𝑜evalSvar1SyB1𝑜×y
28 eqid Poly1U=Poly1U
29 eqid Poly1S𝑠R=Poly1S𝑠R
30 eqid PwSer1S𝑠R=PwSer1S𝑠R
31 3 fveq2i Poly1U=Poly1S𝑠R
32 31 fveq2i BasePoly1U=BasePoly1S𝑠R
33 29 30 32 ply1bas BasePoly1U=Base1𝑜mPolyS𝑠R
34 33 eqcomi Base1𝑜mPolyS𝑠R=BasePoly1U
35 7 6 3 28 34 subrgvr1cl φvar1SBase1𝑜mPolyS𝑠R
36 eqid 1𝑜evalSubS=1𝑜evalSubS
37 eqid 1𝑜mPolyS𝑠R=1𝑜mPolyS𝑠R
38 eqid Base1𝑜mPolyS𝑠R=Base1𝑜mPolyS𝑠R
39 1 36 4 37 38 evls1val SCRingRSubRingSvar1SBase1𝑜mPolyS𝑠RQvar1S=1𝑜evalSubSRvar1SyB1𝑜×y
40 5 6 35 39 syl3anc φQvar1S=1𝑜evalSubSRvar1SyB1𝑜×y
41 crngring SCRingSRing
42 eqid Poly1S=Poly1S
43 eqid PwSer1S=PwSer1S
44 eqid BasePoly1S=BasePoly1S
45 42 43 44 ply1bas BasePoly1S=Base1𝑜mPolyS
46 45 eqcomi Base1𝑜mPolyS=BasePoly1S
47 7 42 46 vr1cl SRingvar1SBase1𝑜mPolyS
48 5 41 47 3syl φvar1SBase1𝑜mPolyS
49 eqid eval1S=eval1S
50 eqid 1𝑜mPolyS=1𝑜mPolyS
51 eqid Base1𝑜mPolyS=Base1𝑜mPolyS
52 49 12 4 50 51 evl1val SCRingvar1SBase1𝑜mPolySeval1Svar1S=1𝑜evalSvar1SyB1𝑜×y
53 5 48 52 syl2anc φeval1Svar1S=1𝑜evalSvar1SyB1𝑜×y
54 27 40 53 3eqtr4d φQvar1S=eval1Svar1S
55 49 7 4 evl1var SCRingeval1Svar1S=IB
56 5 55 syl φeval1Svar1S=IB
57 10 54 56 3eqtrd φQX=IB