Description: If F is a complex continuous function and N is a fixed number, then F^N is continuous too. A generalization of expcncf . (Contributed by Glauco Siliprandi, 29-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | expcnfg.1 | |
|
expcnfg.2 | |
||
expcnfg.3 | |
||
Assertion | expcnfg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcnfg.1 | |
|
2 | expcnfg.2 | |
|
3 | expcnfg.3 | |
|
4 | nfcv | |
|
5 | nfcv | |
|
6 | 1 5 | nffv | |
7 | nfcv | |
|
8 | nfcv | |
|
9 | 6 7 8 | nfov | |
10 | fveq2 | |
|
11 | 10 | oveq1d | |
12 | 4 9 11 | cbvmpt | |
13 | cncff | |
|
14 | 2 13 | syl | |
15 | 14 | ffvelcdmda | |
16 | 3 | adantr | |
17 | 15 16 | expcld | |
18 | oveq1 | |
|
19 | eqid | |
|
20 | 6 9 18 19 | fvmptf | |
21 | 15 17 20 | syl2anc | |
22 | 21 | eqcomd | |
23 | 22 | mpteq2dva | |
24 | 12 23 | eqtrid | |
25 | simpr | |
|
26 | 3 | adantr | |
27 | 25 26 | expcld | |
28 | 27 | fmpttd | |
29 | fcompt | |
|
30 | 28 14 29 | syl2anc | |
31 | 24 30 | eqtr4d | |
32 | expcncf | |
|
33 | 3 32 | syl | |
34 | 2 33 | cncfco | |
35 | 31 34 | eqeltrd | |