Metamath Proof Explorer


Theorem expcnfg

Description: If F is a complex continuous function and N is a fixed number, then F^N is continuous too. A generalization of expcncf . (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses expcnfg.1 _xF
expcnfg.2 φF:Acn
expcnfg.3 φN0
Assertion expcnfg φxAFxN:Acn

Proof

Step Hyp Ref Expression
1 expcnfg.1 _xF
2 expcnfg.2 φF:Acn
3 expcnfg.3 φN0
4 nfcv _tFxN
5 nfcv _xt
6 1 5 nffv _xFt
7 nfcv _x^
8 nfcv _xN
9 6 7 8 nfov _xFtN
10 fveq2 x=tFx=Ft
11 10 oveq1d x=tFxN=FtN
12 4 9 11 cbvmpt xAFxN=tAFtN
13 cncff F:AcnF:A
14 2 13 syl φF:A
15 14 ffvelcdmda φtAFt
16 3 adantr φtAN0
17 15 16 expcld φtAFtN
18 oveq1 x=FtxN=FtN
19 eqid xxN=xxN
20 6 9 18 19 fvmptf FtFtNxxNFt=FtN
21 15 17 20 syl2anc φtAxxNFt=FtN
22 21 eqcomd φtAFtN=xxNFt
23 22 mpteq2dva φtAFtN=tAxxNFt
24 12 23 eqtrid φxAFxN=tAxxNFt
25 simpr φxx
26 3 adantr φxN0
27 25 26 expcld φxxN
28 27 fmpttd φxxN:
29 fcompt xxN:F:AxxNF=tAxxNFt
30 28 14 29 syl2anc φxxNF=tAxxNFt
31 24 30 eqtr4d φxAFxN=xxNF
32 expcncf N0xxN:cn
33 3 32 syl φxxN:cn
34 2 33 cncfco φxxNF:Acn
35 31 34 eqeltrd φxAFxN:Acn