Metamath Proof Explorer


Theorem expge1

Description: A real greater than or equal to 1 raised to a nonnegative integer is greater than or equal to 1. (Contributed by NM, 21-Feb-2005) (Revised by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion expge1 AN01A1AN

Proof

Step Hyp Ref Expression
1 breq2 z=A1z1A
2 1 elrab Az|1zA1A
3 ssrab2 z|1z
4 ax-resscn
5 3 4 sstri z|1z
6 breq2 z=x1z1x
7 6 elrab xz|1zx1x
8 breq2 z=y1z1y
9 8 elrab yz|1zy1y
10 breq2 z=xy1z1xy
11 remulcl xyxy
12 11 ad2ant2r x1xy1yxy
13 1t1e1 11=1
14 1re 1
15 0le1 01
16 14 15 pm3.2i 101
17 16 jctl x101x
18 16 jctl y101y
19 lemul12a 101x101y1x1y11xy
20 17 18 19 syl2an xy1x1y11xy
21 20 imp xy1x1y11xy
22 13 21 eqbrtrrid xy1x1y1xy
23 22 an4s x1xy1y1xy
24 10 12 23 elrabd x1xy1yxyz|1z
25 7 9 24 syl2anb xz|1zyz|1zxyz|1z
26 1le1 11
27 breq2 z=11z11
28 27 elrab 1z|1z111
29 14 26 28 mpbir2an 1z|1z
30 5 25 29 expcllem Az|1zN0ANz|1z
31 2 30 sylanbr A1AN0ANz|1z
32 31 3impa A1AN0ANz|1z
33 32 3com23 AN01AANz|1z
34 breq2 z=AN1z1AN
35 34 elrab ANz|1zAN1AN
36 35 simprbi ANz|1z1AN
37 33 36 syl AN01A1AN