| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 |  | 
						
							| 2 |  | nnne0 |  | 
						
							| 3 | 2 | adantl |  | 
						
							| 4 |  | nncn |  | 
						
							| 5 | 4 | adantl |  | 
						
							| 6 | 5 | negeq0d |  | 
						
							| 7 | 6 | necon3abid |  | 
						
							| 8 | 3 7 | mpbid |  | 
						
							| 9 | 8 | iffalsed |  | 
						
							| 10 |  | nnnn0 |  | 
						
							| 11 | 10 | adantl |  | 
						
							| 12 |  | nn0nlt0 |  | 
						
							| 13 | 11 12 | syl |  | 
						
							| 14 | 11 | nn0red |  | 
						
							| 15 | 14 | lt0neg1d |  | 
						
							| 16 | 13 15 | mtbid |  | 
						
							| 17 | 16 | iffalsed |  | 
						
							| 18 | 5 | negnegd |  | 
						
							| 19 | 18 | fveq2d |  | 
						
							| 20 | 19 | oveq2d |  | 
						
							| 21 | 9 17 20 | 3eqtrd |  | 
						
							| 22 |  | nnnegz |  | 
						
							| 23 |  | expval |  | 
						
							| 24 | 22 23 | sylan2 |  | 
						
							| 25 |  | expnnval |  | 
						
							| 26 | 25 | oveq2d |  | 
						
							| 27 | 21 24 26 | 3eqtr4d |  | 
						
							| 28 |  | 1div1e1 |  | 
						
							| 29 | 28 | eqcomi |  | 
						
							| 30 |  | negeq |  | 
						
							| 31 |  | neg0 |  | 
						
							| 32 | 30 31 | eqtrdi |  | 
						
							| 33 | 32 | oveq2d |  | 
						
							| 34 |  | exp0 |  | 
						
							| 35 | 33 34 | sylan9eqr |  | 
						
							| 36 |  | oveq2 |  | 
						
							| 37 | 36 34 | sylan9eqr |  | 
						
							| 38 | 37 | oveq2d |  | 
						
							| 39 | 29 35 38 | 3eqtr4a |  | 
						
							| 40 | 27 39 | jaodan |  | 
						
							| 41 | 1 40 | sylan2b |  |