Metamath Proof Explorer


Theorem expneg

Description: Value of a complex number raised to a nonpositive integer power. When A = 0 and N is nonzero, both sides have the "value" ( 1 / 0 ) ; relying on that should be avoid in applications. (Contributed by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion expneg AN0AN=1AN

Proof

Step Hyp Ref Expression
1 elnn0 N0NN=0
2 nnne0 NN0
3 2 adantl ANN0
4 nncn NN
5 4 adantl ANN
6 5 negeq0d ANN=0N=0
7 6 necon3abid ANN0¬N=0
8 3 7 mpbid AN¬N=0
9 8 iffalsed ANifN=01if0<Nseq1××AN1seq1××A- N=if0<Nseq1××AN1seq1××A- N
10 nnnn0 NN0
11 10 adantl ANN0
12 nn0nlt0 N0¬N<0
13 11 12 syl AN¬N<0
14 11 nn0red ANN
15 14 lt0neg1d ANN<00<N
16 13 15 mtbid AN¬0<N
17 16 iffalsed ANif0<Nseq1××AN1seq1××A- N=1seq1××A- N
18 5 negnegd AN- N=N
19 18 fveq2d ANseq1××A- N=seq1××AN
20 19 oveq2d AN1seq1××A- N=1seq1××AN
21 9 17 20 3eqtrd ANifN=01if0<Nseq1××AN1seq1××A- N=1seq1××AN
22 nnnegz NN
23 expval ANAN=ifN=01if0<Nseq1××AN1seq1××A- N
24 22 23 sylan2 ANAN=ifN=01if0<Nseq1××AN1seq1××A- N
25 expnnval ANAN=seq1××AN
26 25 oveq2d AN1AN=1seq1××AN
27 21 24 26 3eqtr4d ANAN=1AN
28 1div1e1 11=1
29 28 eqcomi 1=11
30 negeq N=0N=0
31 neg0 0=0
32 30 31 eqtrdi N=0N=0
33 32 oveq2d N=0AN=A0
34 exp0 AA0=1
35 33 34 sylan9eqr AN=0AN=1
36 oveq2 N=0AN=A0
37 36 34 sylan9eqr AN=0AN=1
38 37 oveq2d AN=01AN=11
39 29 35 38 3eqtr4a AN=0AN=1AN
40 27 39 jaodan ANN=0AN=1AN
41 1 40 sylan2b AN0AN=1AN