Description: If exactly one of two permutations is limited to a set of points, then the composition will not be. (Contributed by Stefan O'Rear, 23-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | f1omvdco2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excxor | |
|
2 | coass | |
|
3 | f1ococnv1 | |
|
4 | 3 | coeq1d | |
5 | f1of | |
|
6 | fcoi2 | |
|
7 | 5 6 | syl | |
8 | 4 7 | sylan9eq | |
9 | 2 8 | eqtr3id | |
10 | 9 | difeq1d | |
11 | 10 | dmeqd | |
12 | 11 | adantr | |
13 | mvdco | |
|
14 | f1omvdcnv | |
|
15 | 14 | ad2antrr | |
16 | simprl | |
|
17 | 15 16 | eqsstrd | |
18 | simprr | |
|
19 | 17 18 | unssd | |
20 | 13 19 | sstrid | |
21 | 12 20 | eqsstrrd | |
22 | 21 | expr | |
23 | 22 | con3d | |
24 | 23 | expimpd | |
25 | coass | |
|
26 | f1ococnv2 | |
|
27 | 26 | coeq2d | |
28 | f1of | |
|
29 | fcoi1 | |
|
30 | 28 29 | syl | |
31 | 27 30 | sylan9eqr | |
32 | 25 31 | eqtrid | |
33 | 32 | difeq1d | |
34 | 33 | dmeqd | |
35 | 34 | adantr | |
36 | mvdco | |
|
37 | simprr | |
|
38 | f1omvdcnv | |
|
39 | 38 | ad2antlr | |
40 | simprl | |
|
41 | 39 40 | eqsstrd | |
42 | 37 41 | unssd | |
43 | 36 42 | sstrid | |
44 | 35 43 | eqsstrrd | |
45 | 44 | expr | |
46 | 45 | con3d | |
47 | 46 | expimpd | |
48 | 47 | ancomsd | |
49 | 24 48 | jaod | |
50 | 1 49 | biimtrid | |
51 | 50 | 3impia | |