| Step |
Hyp |
Ref |
Expression |
| 1 |
|
excxor |
|
| 2 |
|
coass |
|
| 3 |
|
f1ococnv1 |
|
| 4 |
3
|
coeq1d |
|
| 5 |
|
f1of |
|
| 6 |
|
fcoi2 |
|
| 7 |
5 6
|
syl |
|
| 8 |
4 7
|
sylan9eq |
|
| 9 |
2 8
|
eqtr3id |
|
| 10 |
9
|
difeq1d |
|
| 11 |
10
|
dmeqd |
|
| 12 |
11
|
adantr |
|
| 13 |
|
mvdco |
|
| 14 |
|
f1omvdcnv |
|
| 15 |
14
|
ad2antrr |
|
| 16 |
|
simprl |
|
| 17 |
15 16
|
eqsstrd |
|
| 18 |
|
simprr |
|
| 19 |
17 18
|
unssd |
|
| 20 |
13 19
|
sstrid |
|
| 21 |
12 20
|
eqsstrrd |
|
| 22 |
21
|
expr |
|
| 23 |
22
|
con3d |
|
| 24 |
23
|
expimpd |
|
| 25 |
|
coass |
|
| 26 |
|
f1ococnv2 |
|
| 27 |
26
|
coeq2d |
|
| 28 |
|
f1of |
|
| 29 |
|
fcoi1 |
|
| 30 |
28 29
|
syl |
|
| 31 |
27 30
|
sylan9eqr |
|
| 32 |
25 31
|
eqtrid |
|
| 33 |
32
|
difeq1d |
|
| 34 |
33
|
dmeqd |
|
| 35 |
34
|
adantr |
|
| 36 |
|
mvdco |
|
| 37 |
|
simprr |
|
| 38 |
|
f1omvdcnv |
|
| 39 |
38
|
ad2antlr |
|
| 40 |
|
simprl |
|
| 41 |
39 40
|
eqsstrd |
|
| 42 |
37 41
|
unssd |
|
| 43 |
36 42
|
sstrid |
|
| 44 |
35 43
|
eqsstrrd |
|
| 45 |
44
|
expr |
|
| 46 |
45
|
con3d |
|
| 47 |
46
|
expimpd |
|
| 48 |
47
|
ancomsd |
|
| 49 |
24 48
|
jaod |
|
| 50 |
1 49
|
biimtrid |
|
| 51 |
50
|
3impia |
|