Metamath Proof Explorer


Theorem f1oresf1o2

Description: Build a bijection by restricting the domain of a bijection. (Contributed by AV, 31-Jul-2022)

Ref Expression
Hypotheses f1oresf1o2.1 φF:A1-1 ontoB
f1oresf1o2.2 φDA
f1oresf1o2.3 φy=FxxDχ
Assertion f1oresf1o2 φFD:D1-1 ontoyB|χ

Proof

Step Hyp Ref Expression
1 f1oresf1o2.1 φF:A1-1 ontoB
2 f1oresf1o2.2 φDA
3 f1oresf1o2.3 φy=FxxDχ
4 f1of F:A1-1 ontoBF:AB
5 1 4 syl φF:AB
6 5 adantr φxDF:AB
7 2 sselda φxDxA
8 6 7 jca φxDF:ABxA
9 8 3adant3 φxDFx=yF:ABxA
10 ffvelcdm F:ABxAFxB
11 9 10 syl φxDFx=yFxB
12 eleq1 Fx=yFxByB
13 12 3ad2ant3 φxDFx=yFxByB
14 11 13 mpbid φxDFx=yyB
15 eqcom Fx=yy=Fx
16 3 biimpd φy=FxxDχ
17 16 ex φy=FxxDχ
18 15 17 biimtrid φFx=yxDχ
19 18 com23 φxDFx=yχ
20 19 3imp φxDFx=yχ
21 14 20 jca φxDFx=yyBχ
22 21 rexlimdv3a φxDFx=yyBχ
23 f1ofo F:A1-1 ontoBF:AontoB
24 1 23 syl φF:AontoB
25 foelcdmi F:AontoByBxAFx=y
26 24 25 sylan φyBxAFx=y
27 26 ex φyBxAFx=y
28 nfv xφ
29 nfv xχ
30 nfre1 xxDFx=y
31 29 30 nfim xχxDFx=y
32 rspe xDFx=yxDFx=y
33 32 expcom Fx=yxDxDFx=y
34 33 eqcoms y=FxxDxDFx=y
35 34 adantl φy=FxxDxDFx=y
36 3 35 sylbird φy=FxχxDFx=y
37 36 ex φy=FxχxDFx=y
38 37 adantr φxAy=FxχxDFx=y
39 15 38 biimtrid φxAFx=yχxDFx=y
40 39 ex φxAFx=yχxDFx=y
41 28 31 40 rexlimd φxAFx=yχxDFx=y
42 27 41 syld φyBχxDFx=y
43 42 impd φyBχxDFx=y
44 22 43 impbid φxDFx=yyBχ
45 1 2 44 f1oresf1o φFD:D1-1 ontoyB|χ