Description: Build a bijection by restricting the domain of a bijection. (Contributed by AV, 31-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | f1oresf1o2.1 | |
|
f1oresf1o2.2 | |
||
f1oresf1o2.3 | |
||
Assertion | f1oresf1o2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oresf1o2.1 | |
|
2 | f1oresf1o2.2 | |
|
3 | f1oresf1o2.3 | |
|
4 | f1of | |
|
5 | 1 4 | syl | |
6 | 5 | adantr | |
7 | 2 | sselda | |
8 | 6 7 | jca | |
9 | 8 | 3adant3 | |
10 | ffvelcdm | |
|
11 | 9 10 | syl | |
12 | eleq1 | |
|
13 | 12 | 3ad2ant3 | |
14 | 11 13 | mpbid | |
15 | eqcom | |
|
16 | 3 | biimpd | |
17 | 16 | ex | |
18 | 15 17 | biimtrid | |
19 | 18 | com23 | |
20 | 19 | 3imp | |
21 | 14 20 | jca | |
22 | 21 | rexlimdv3a | |
23 | f1ofo | |
|
24 | 1 23 | syl | |
25 | foelcdmi | |
|
26 | 24 25 | sylan | |
27 | 26 | ex | |
28 | nfv | |
|
29 | nfv | |
|
30 | nfre1 | |
|
31 | 29 30 | nfim | |
32 | rspe | |
|
33 | 32 | expcom | |
34 | 33 | eqcoms | |
35 | 34 | adantl | |
36 | 3 35 | sylbird | |
37 | 36 | ex | |
38 | 37 | adantr | |
39 | 15 38 | biimtrid | |
40 | 39 | ex | |
41 | 28 31 40 | rexlimd | |
42 | 27 41 | syld | |
43 | 42 | impd | |
44 | 22 43 | impbid | |
45 | 1 2 44 | f1oresf1o | |