Metamath Proof Explorer


Theorem fbasfip

Description: A filter base has the finite intersection property. (Contributed by Jeff Hankins, 2-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion fbasfip FfBasX¬fiF

Proof

Step Hyp Ref Expression
1 elin y𝒫FFiny𝒫FyFin
2 elpwi y𝒫FyF
3 2 anim1i y𝒫FyFinyFyFin
4 1 3 sylbi y𝒫FFinyFyFin
5 fbssint FfBasXyFyFinzFzy
6 5 3expb FfBasXyFyFinzFzy
7 4 6 sylan2 FfBasXy𝒫FFinzFzy
8 0nelfb FfBasX¬F
9 8 ad2antrr FfBasXy𝒫FFinzF¬F
10 eleq1 z=zFF
11 10 biimpcd zFz=F
12 11 adantl FfBasXy𝒫FFinzFz=F
13 9 12 mtod FfBasXy𝒫FFinzF¬z=
14 ss0 zz=
15 13 14 nsyl FfBasXy𝒫FFinzF¬z
16 15 adantrr FfBasXy𝒫FFinzFzy¬z
17 sseq2 =yzzy
18 17 biimprcd zy=yz
19 18 ad2antll FfBasXy𝒫FFinzFzy=yz
20 16 19 mtod FfBasXy𝒫FFinzFzy¬=y
21 7 20 rexlimddv FfBasXy𝒫FFin¬=y
22 21 nrexdv FfBasX¬y𝒫FFin=y
23 0ex V
24 elfi VFfBasXfiFy𝒫FFin=y
25 23 24 mpan FfBasXfiFy𝒫FFin=y
26 22 25 mtbird FfBasX¬fiF