Metamath Proof Explorer


Theorem fbunfip

Description: A helpful lemma for showing that certain sets generate filters. (Contributed by Jeff Hankins, 3-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion fbunfip FfBasXGfBasY¬fiFGxFyGxy

Proof

Step Hyp Ref Expression
1 elfiun FfBasXGfBasYfiFGfiFfiGxfiFyfiG=xy
2 1 notbid FfBasXGfBasY¬fiFG¬fiFfiGxfiFyfiG=xy
3 3ioran ¬fiFfiGxfiFyfiG=xy¬fiF¬fiG¬xfiFyfiG=xy
4 df-3an ¬fiF¬fiG¬xfiFyfiG=xy¬fiF¬fiG¬xfiFyfiG=xy
5 3 4 bitr2i ¬fiF¬fiG¬xfiFyfiG=xy¬fiFfiGxfiFyfiG=xy
6 2 5 bitr4di FfBasXGfBasY¬fiFG¬fiF¬fiG¬xfiFyfiG=xy
7 nesym xy¬=xy
8 7 ralbii yfiGxyyfiG¬=xy
9 ralnex yfiG¬=xy¬yfiG=xy
10 8 9 bitri yfiGxy¬yfiG=xy
11 10 ralbii xfiFyfiGxyxfiF¬yfiG=xy
12 ralnex xfiF¬yfiG=xy¬xfiFyfiG=xy
13 11 12 bitri xfiFyfiGxy¬xfiFyfiG=xy
14 fbasfip FfBasX¬fiF
15 fbasfip GfBasY¬fiG
16 14 15 anim12i FfBasXGfBasY¬fiF¬fiG
17 16 biantrurd FfBasXGfBasY¬xfiFyfiG=xy¬fiF¬fiG¬xfiFyfiG=xy
18 13 17 bitr2id FfBasXGfBasY¬fiF¬fiG¬xfiFyfiG=xyxfiFyfiGxy
19 ssfii FfBasXFfiF
20 ssralv FfiFxfiFyfiGxyxFyfiGxy
21 19 20 syl FfBasXxfiFyfiGxyxFyfiGxy
22 ssfii GfBasYGfiG
23 ssralv GfiGyfiGxyyGxy
24 22 23 syl GfBasYyfiGxyyGxy
25 24 ralimdv GfBasYxFyfiGxyxFyGxy
26 21 25 sylan9 FfBasXGfBasYxfiFyfiGxyxFyGxy
27 ineq1 x=zxy=zy
28 27 neeq1d x=zxyzy
29 ineq2 y=wzy=zw
30 29 neeq1d y=wzyzw
31 28 30 cbvral2vw xFyGxyzFwGzw
32 fbssfi FfBasXxfiFzFzx
33 fbssfi GfBasYyfiGwGwy
34 r19.29 zFwGzwzFzxzFwGzwzx
35 r19.29 wGzwwGwywGzwwy
36 ss2in zxwyzwxy
37 sseq2 xy=zwxyzw
38 ss0 zwzw=
39 37 38 syl6bi xy=zwxyzw=
40 36 39 syl5com zxwyxy=zw=
41 40 necon3d zxwyzwxy
42 41 ex zxwyzwxy
43 42 com13 zwwyzxxy
44 43 imp zwwyzxxy
45 44 rexlimivw wGzwwyzxxy
46 35 45 syl wGzwwGwyzxxy
47 46 impancom wGzwzxwGwyxy
48 47 rexlimivw zFwGzwzxwGwyxy
49 34 48 syl zFwGzwzFzxwGwyxy
50 49 expimpd zFwGzwzFzxwGwyxy
51 50 com12 zFzxwGwyzFwGzwxy
52 32 33 51 syl2an FfBasXxfiFGfBasYyfiGzFwGzwxy
53 52 an4s FfBasXGfBasYxfiFyfiGzFwGzwxy
54 53 ralrimdvva FfBasXGfBasYzFwGzwxfiFyfiGxy
55 31 54 biimtrid FfBasXGfBasYxFyGxyxfiFyfiGxy
56 26 55 impbid FfBasXGfBasYxfiFyfiGxyxFyGxy
57 6 18 56 3bitrd FfBasXGfBasY¬fiFGxFyGxy