Metamath Proof Explorer


Theorem fdc1

Description: Variant of fdc with no specified base value. (Contributed by Jeff Madsen, 18-Jun-2010)

Ref Expression
Hypotheses fdc1.1 A V
fdc1.2 M
fdc1.3 Z = M
fdc1.4 N = M + 1
fdc1.5 a = f M ζ σ
fdc1.6 a = f k 1 φ ψ
fdc1.7 b = f k ψ χ
fdc1.8 a = f n θ τ
fdc1.9 η a A ζ
fdc1.10 η R Fr A
fdc1.11 η a A θ b A φ
fdc1.12 η φ a A b A b R a
Assertion fdc1 η n Z f f : M n A σ τ k N n χ

Proof

Step Hyp Ref Expression
1 fdc1.1 A V
2 fdc1.2 M
3 fdc1.3 Z = M
4 fdc1.4 N = M + 1
5 fdc1.5 a = f M ζ σ
6 fdc1.6 a = f k 1 φ ψ
7 fdc1.7 b = f k ψ χ
8 fdc1.8 a = f n θ τ
9 fdc1.9 η a A ζ
10 fdc1.10 η R Fr A
11 fdc1.11 η a A θ b A φ
12 fdc1.12 η φ a A b A b R a
13 eleq1w c = a c A a A
14 13 anbi2d c = a η c A η a A
15 sbceq2a c = a [˙c / a]˙ ζ ζ
16 14 15 anbi12d c = a η c A [˙c / a]˙ ζ η a A ζ
17 16 imbi1d c = a η c A [˙c / a]˙ ζ n Z f f : M n A σ τ k N n χ η a A ζ n Z f f : M n A σ τ k N n χ
18 sbsbc d a φ [˙d / a]˙ φ
19 nfv a ψ
20 19 6 sbhypf d = f k 1 d a φ ψ
21 18 20 bitr3id d = f k 1 [˙d / a]˙ φ ψ
22 sbsbc d a θ [˙d / a]˙ θ
23 nfv a τ
24 23 8 sbhypf d = f n d a θ τ
25 22 24 bitr3id d = f n [˙d / a]˙ θ τ
26 simprl η c A [˙c / a]˙ ζ c A
27 10 adantr η c A [˙c / a]˙ ζ R Fr A
28 nfv a η d A
29 nfsbc1v a [˙d / a]˙ θ
30 nfcv _ a A
31 nfsbc1v a [˙d / a]˙ φ
32 30 31 nfrex a b A [˙d / a]˙ φ
33 29 32 nfor a [˙d / a]˙ θ b A [˙d / a]˙ φ
34 28 33 nfim a η d A [˙d / a]˙ θ b A [˙d / a]˙ φ
35 eleq1w a = d a A d A
36 35 anbi2d a = d η a A η d A
37 sbceq1a a = d θ [˙d / a]˙ θ
38 sbceq1a a = d φ [˙d / a]˙ φ
39 38 rexbidv a = d b A φ b A [˙d / a]˙ φ
40 37 39 orbi12d a = d θ b A φ [˙d / a]˙ θ b A [˙d / a]˙ φ
41 36 40 imbi12d a = d η a A θ b A φ η d A [˙d / a]˙ θ b A [˙d / a]˙ φ
42 34 41 11 chvarfv η d A [˙d / a]˙ θ b A [˙d / a]˙ φ
43 42 adantlr η c A [˙c / a]˙ ζ d A [˙d / a]˙ θ b A [˙d / a]˙ φ
44 nfv a η
45 44 31 nfan a η [˙d / a]˙ φ
46 nfv a d A b A
47 45 46 nfan a η [˙d / a]˙ φ d A b A
48 nfv a b R d
49 47 48 nfim a η [˙d / a]˙ φ d A b A b R d
50 38 anbi2d a = d η φ η [˙d / a]˙ φ
51 35 anbi1d a = d a A b A d A b A
52 50 51 anbi12d a = d η φ a A b A η [˙d / a]˙ φ d A b A
53 breq2 a = d b R a b R d
54 52 53 imbi12d a = d η φ a A b A b R a η [˙d / a]˙ φ d A b A b R d
55 49 54 12 chvarfv η [˙d / a]˙ φ d A b A b R d
56 55 adantllr η c A [˙c / a]˙ ζ [˙d / a]˙ φ d A b A b R d
57 1 2 3 4 21 7 25 26 27 43 56 fdc η c A [˙c / a]˙ ζ n Z f f : M n A f M = c τ k N n χ
58 57 anassrs η c A [˙c / a]˙ ζ n Z f f : M n A f M = c τ k N n χ
59 idd η c A [˙c / a]˙ ζ f : M n A f : M n A
60 dfsbcq f M = c [˙ f M / a]˙ ζ [˙c / a]˙ ζ
61 fvex f M V
62 61 5 sbcie [˙ f M / a]˙ ζ σ
63 60 62 bitr3di f M = c [˙c / a]˙ ζ σ
64 63 biimpcd [˙c / a]˙ ζ f M = c σ
65 64 adantl η c A [˙c / a]˙ ζ f M = c σ
66 65 anim1d η c A [˙c / a]˙ ζ f M = c τ σ τ
67 idd η c A [˙c / a]˙ ζ k N n χ k N n χ
68 59 66 67 3anim123d η c A [˙c / a]˙ ζ f : M n A f M = c τ k N n χ f : M n A σ τ k N n χ
69 68 eximdv η c A [˙c / a]˙ ζ f f : M n A f M = c τ k N n χ f f : M n A σ τ k N n χ
70 69 reximdv η c A [˙c / a]˙ ζ n Z f f : M n A f M = c τ k N n χ n Z f f : M n A σ τ k N n χ
71 58 70 mpd η c A [˙c / a]˙ ζ n Z f f : M n A σ τ k N n χ
72 17 71 chvarvv η a A ζ n Z f f : M n A σ τ k N n χ
73 72 9 r19.29a η n Z f f : M n A σ τ k N n χ