| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fdc1.1 |
|
| 2 |
|
fdc1.2 |
|
| 3 |
|
fdc1.3 |
|
| 4 |
|
fdc1.4 |
|
| 5 |
|
fdc1.5 |
|
| 6 |
|
fdc1.6 |
|
| 7 |
|
fdc1.7 |
|
| 8 |
|
fdc1.8 |
|
| 9 |
|
fdc1.9 |
|
| 10 |
|
fdc1.10 |
|
| 11 |
|
fdc1.11 |
|
| 12 |
|
fdc1.12 |
|
| 13 |
|
eleq1w |
|
| 14 |
13
|
anbi2d |
|
| 15 |
|
sbceq2a |
|
| 16 |
14 15
|
anbi12d |
|
| 17 |
16
|
imbi1d |
|
| 18 |
|
sbsbc |
|
| 19 |
|
nfv |
|
| 20 |
19 6
|
sbhypf |
|
| 21 |
18 20
|
bitr3id |
|
| 22 |
|
sbsbc |
|
| 23 |
|
nfv |
|
| 24 |
23 8
|
sbhypf |
|
| 25 |
22 24
|
bitr3id |
|
| 26 |
|
simprl |
|
| 27 |
10
|
adantr |
|
| 28 |
|
nfv |
|
| 29 |
|
nfsbc1v |
|
| 30 |
|
nfcv |
|
| 31 |
|
nfsbc1v |
|
| 32 |
30 31
|
nfrexw |
|
| 33 |
29 32
|
nfor |
|
| 34 |
28 33
|
nfim |
|
| 35 |
|
eleq1w |
|
| 36 |
35
|
anbi2d |
|
| 37 |
|
sbceq1a |
|
| 38 |
|
sbceq1a |
|
| 39 |
38
|
rexbidv |
|
| 40 |
37 39
|
orbi12d |
|
| 41 |
36 40
|
imbi12d |
|
| 42 |
34 41 11
|
chvarfv |
|
| 43 |
42
|
adantlr |
|
| 44 |
|
nfv |
|
| 45 |
44 31
|
nfan |
|
| 46 |
|
nfv |
|
| 47 |
45 46
|
nfan |
|
| 48 |
|
nfv |
|
| 49 |
47 48
|
nfim |
|
| 50 |
38
|
anbi2d |
|
| 51 |
35
|
anbi1d |
|
| 52 |
50 51
|
anbi12d |
|
| 53 |
|
breq2 |
|
| 54 |
52 53
|
imbi12d |
|
| 55 |
49 54 12
|
chvarfv |
|
| 56 |
55
|
adantllr |
|
| 57 |
1 2 3 4 21 7 25 26 27 43 56
|
fdc |
|
| 58 |
57
|
anassrs |
|
| 59 |
|
idd |
|
| 60 |
|
dfsbcq |
|
| 61 |
|
fvex |
|
| 62 |
61 5
|
sbcie |
|
| 63 |
60 62
|
bitr3di |
|
| 64 |
63
|
biimpcd |
|
| 65 |
64
|
adantl |
|
| 66 |
65
|
anim1d |
|
| 67 |
|
idd |
|
| 68 |
59 66 67
|
3anim123d |
|
| 69 |
68
|
eximdv |
|
| 70 |
69
|
reximdv |
|
| 71 |
58 70
|
mpd |
|
| 72 |
17 71
|
chvarvv |
|
| 73 |
72 9
|
r19.29a |
|