Metamath Proof Explorer


Theorem fdc1

Description: Variant of fdc with no specified base value. (Contributed by Jeff Madsen, 18-Jun-2010)

Ref Expression
Hypotheses fdc1.1 AV
fdc1.2 M
fdc1.3 Z=M
fdc1.4 N=M+1
fdc1.5 a=fMζσ
fdc1.6 a=fk1φψ
fdc1.7 b=fkψχ
fdc1.8 a=fnθτ
fdc1.9 ηaAζ
fdc1.10 ηRFrA
fdc1.11 ηaAθbAφ
fdc1.12 ηφaAbAbRa
Assertion fdc1 ηnZff:MnAστkNnχ

Proof

Step Hyp Ref Expression
1 fdc1.1 AV
2 fdc1.2 M
3 fdc1.3 Z=M
4 fdc1.4 N=M+1
5 fdc1.5 a=fMζσ
6 fdc1.6 a=fk1φψ
7 fdc1.7 b=fkψχ
8 fdc1.8 a=fnθτ
9 fdc1.9 ηaAζ
10 fdc1.10 ηRFrA
11 fdc1.11 ηaAθbAφ
12 fdc1.12 ηφaAbAbRa
13 eleq1w c=acAaA
14 13 anbi2d c=aηcAηaA
15 sbceq2a c=a[˙c/a]˙ζζ
16 14 15 anbi12d c=aηcA[˙c/a]˙ζηaAζ
17 16 imbi1d c=aηcA[˙c/a]˙ζnZff:MnAστkNnχηaAζnZff:MnAστkNnχ
18 sbsbc daφ[˙d/a]˙φ
19 nfv aψ
20 19 6 sbhypf d=fk1daφψ
21 18 20 bitr3id d=fk1[˙d/a]˙φψ
22 sbsbc daθ[˙d/a]˙θ
23 nfv aτ
24 23 8 sbhypf d=fndaθτ
25 22 24 bitr3id d=fn[˙d/a]˙θτ
26 simprl ηcA[˙c/a]˙ζcA
27 10 adantr ηcA[˙c/a]˙ζRFrA
28 nfv aηdA
29 nfsbc1v a[˙d/a]˙θ
30 nfcv _aA
31 nfsbc1v a[˙d/a]˙φ
32 30 31 nfrexw abA[˙d/a]˙φ
33 29 32 nfor a[˙d/a]˙θbA[˙d/a]˙φ
34 28 33 nfim aηdA[˙d/a]˙θbA[˙d/a]˙φ
35 eleq1w a=daAdA
36 35 anbi2d a=dηaAηdA
37 sbceq1a a=dθ[˙d/a]˙θ
38 sbceq1a a=dφ[˙d/a]˙φ
39 38 rexbidv a=dbAφbA[˙d/a]˙φ
40 37 39 orbi12d a=dθbAφ[˙d/a]˙θbA[˙d/a]˙φ
41 36 40 imbi12d a=dηaAθbAφηdA[˙d/a]˙θbA[˙d/a]˙φ
42 34 41 11 chvarfv ηdA[˙d/a]˙θbA[˙d/a]˙φ
43 42 adantlr ηcA[˙c/a]˙ζdA[˙d/a]˙θbA[˙d/a]˙φ
44 nfv aη
45 44 31 nfan aη[˙d/a]˙φ
46 nfv adAbA
47 45 46 nfan aη[˙d/a]˙φdAbA
48 nfv abRd
49 47 48 nfim aη[˙d/a]˙φdAbAbRd
50 38 anbi2d a=dηφη[˙d/a]˙φ
51 35 anbi1d a=daAbAdAbA
52 50 51 anbi12d a=dηφaAbAη[˙d/a]˙φdAbA
53 breq2 a=dbRabRd
54 52 53 imbi12d a=dηφaAbAbRaη[˙d/a]˙φdAbAbRd
55 49 54 12 chvarfv η[˙d/a]˙φdAbAbRd
56 55 adantllr ηcA[˙c/a]˙ζ[˙d/a]˙φdAbAbRd
57 1 2 3 4 21 7 25 26 27 43 56 fdc ηcA[˙c/a]˙ζnZff:MnAfM=cτkNnχ
58 57 anassrs ηcA[˙c/a]˙ζnZff:MnAfM=cτkNnχ
59 idd ηcA[˙c/a]˙ζf:MnAf:MnA
60 dfsbcq fM=c[˙fM/a]˙ζ[˙c/a]˙ζ
61 fvex fMV
62 61 5 sbcie [˙fM/a]˙ζσ
63 60 62 bitr3di fM=c[˙c/a]˙ζσ
64 63 biimpcd [˙c/a]˙ζfM=cσ
65 64 adantl ηcA[˙c/a]˙ζfM=cσ
66 65 anim1d ηcA[˙c/a]˙ζfM=cτστ
67 idd ηcA[˙c/a]˙ζkNnχkNnχ
68 59 66 67 3anim123d ηcA[˙c/a]˙ζf:MnAfM=cτkNnχf:MnAστkNnχ
69 68 eximdv ηcA[˙c/a]˙ζff:MnAfM=cτkNnχff:MnAστkNnχ
70 69 reximdv ηcA[˙c/a]˙ζnZff:MnAfM=cτkNnχnZff:MnAστkNnχ
71 58 70 mpd ηcA[˙c/a]˙ζnZff:MnAστkNnχ
72 17 71 chvarvv ηaAζnZff:MnAστkNnχ
73 72 9 r19.29a ηnZff:MnAστkNnχ