Metamath Proof Explorer


Theorem filnm

Description: Finite left modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypothesis filnm.b B=BaseW
Assertion filnm WLModBFinWLNoeM

Proof

Step Hyp Ref Expression
1 filnm.b B=BaseW
2 simpl WLModBFinWLMod
3 eqid LSubSpW=LSubSpW
4 1 3 lssss aLSubSpWaB
5 4 adantl WLModBFinaLSubSpWaB
6 velpw a𝒫BaB
7 5 6 sylibr WLModBFinaLSubSpWa𝒫B
8 simplr WLModBFinaLSubSpWBFin
9 ssfi BFinaBaFin
10 8 5 9 syl2anc WLModBFinaLSubSpWaFin
11 7 10 elind WLModBFinaLSubSpWa𝒫BFin
12 eqid LSpanW=LSpanW
13 3 12 lspid WLModaLSubSpWLSpanWa=a
14 13 adantlr WLModBFinaLSubSpWLSpanWa=a
15 14 eqcomd WLModBFinaLSubSpWa=LSpanWa
16 fveq2 b=aLSpanWb=LSpanWa
17 16 rspceeqv a𝒫BFina=LSpanWab𝒫BFina=LSpanWb
18 11 15 17 syl2anc WLModBFinaLSubSpWb𝒫BFina=LSpanWb
19 18 ralrimiva WLModBFinaLSubSpWb𝒫BFina=LSpanWb
20 1 3 12 islnm2 WLNoeMWLModaLSubSpWb𝒫BFina=LSpanWb
21 2 19 20 sylanbrc WLModBFinWLNoeM