Metamath Proof Explorer


Theorem fin1a2lem10

Description: Lemma for fin1a2 . A nonempty finite union of members of a chain is a member of the chain. (Contributed by Stefan O'Rear, 8-Nov-2014)

Ref Expression
Assertion fin1a2lem10 AAFin[⊂]OrAAA

Proof

Step Hyp Ref Expression
1 eqneqall a=a[⊂]Oraaa
2 tru
3 2 a1i a=
4 1 3 2thd a=a[⊂]Oraaa
5 neeq1 a=bab
6 soeq2 a=b[⊂]Ora[⊂]Orb
7 unieq a=ba=b
8 id a=ba=b
9 7 8 eleq12d a=baabb
10 6 9 imbi12d a=b[⊂]Oraaa[⊂]Orbbb
11 5 10 imbi12d a=ba[⊂]Oraaab[⊂]Orbbb
12 neeq1 a=bcabc
13 soeq2 a=bc[⊂]Ora[⊂]Orbc
14 unieq a=bca=bc
15 id a=bca=bc
16 14 15 eleq12d a=bcaabcbc
17 13 16 imbi12d a=bc[⊂]Oraaa[⊂]Orbcbcbc
18 12 17 imbi12d a=bca[⊂]Oraaabc[⊂]Orbcbcbc
19 neeq1 a=AaA
20 soeq2 a=A[⊂]Ora[⊂]OrA
21 unieq a=Aa=A
22 id a=Aa=A
23 21 22 eleq12d a=AaaAA
24 20 23 imbi12d a=A[⊂]Oraaa[⊂]OrAAA
25 19 24 imbi12d a=Aa[⊂]OraaaA[⊂]OrAAA
26 unisnv c=c
27 vsnid cc
28 26 27 eqeltri cc
29 uneq1 b=bc=c
30 uncom c=c
31 un0 c=c
32 30 31 eqtri c=c
33 29 32 eqtrdi b=bc=c
34 33 unieqd b=bc=c
35 34 33 eleq12d b=bcbccc
36 28 35 mpbiri b=bcbc
37 36 a1d b=b[⊂]Orbbbbcbc
38 37 adantl bFin[⊂]Orbcbcb=b[⊂]Orbbbbcbc
39 simpr bFin[⊂]Orbcbcbb
40 ssun1 bbc
41 simpl2 bFin[⊂]Orbcbcb[⊂]Orbc
42 soss bbc[⊂]Orbc[⊂]Orb
43 40 41 42 mpsyl bFin[⊂]Orbcbcb[⊂]Orb
44 uniun bc=bc
45 26 uneq2i bc=bc
46 44 45 eqtri bc=bc
47 simprr bFin[⊂]Orbcbcbbbbb
48 simpl2 bFin[⊂]Orbcbcbbb[⊂]Orbc
49 elun1 bbbbc
50 49 ad2antll bFin[⊂]Orbcbcbbbbbc
51 ssun2 cbc
52 51 27 sselii cbc
53 52 a1i bFin[⊂]Orbcbcbbbcbc
54 sorpssi [⊂]Orbcbbccbcbccb
55 48 50 53 54 syl12anc bFin[⊂]Orbcbcbbbbccb
56 ssequn1 bcbc=c
57 52 a1i bbcbc
58 eleq1 bc=cbcbccbc
59 57 58 imbitrrid bc=cbbbcbc
60 56 59 sylbi bcbbbcbc
61 60 impcom bbbcbcbc
62 uncom bc=cb
63 ssequn1 cbcb=b
64 eleq1 cb=bcbbcbbc
65 49 64 imbitrrid cb=bbbcbbc
66 63 65 sylbi cbbbcbbc
67 66 impcom bbcbcbbc
68 62 67 eqeltrid bbcbbcbc
69 61 68 jaodan bbbccbbcbc
70 47 55 69 syl2anc bFin[⊂]Orbcbcbbbbcbc
71 46 70 eqeltrid bFin[⊂]Orbcbcbbbbcbc
72 71 expr bFin[⊂]Orbcbcbbbbcbc
73 43 72 embantd bFin[⊂]Orbcbcb[⊂]Orbbbbcbc
74 39 73 embantd bFin[⊂]Orbcbcbb[⊂]Orbbbbcbc
75 38 74 pm2.61dane bFin[⊂]Orbcbcb[⊂]Orbbbbcbc
76 75 3exp bFin[⊂]Orbcbcb[⊂]Orbbbbcbc
77 76 com24 bFinb[⊂]Orbbbbc[⊂]Orbcbcbc
78 4 11 18 25 2 77 findcard2 AFinA[⊂]OrAAA
79 78 3imp21 AAFin[⊂]OrAAA