| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqneqall |
|
| 2 |
|
tru |
|
| 3 |
2
|
a1i |
|
| 4 |
1 3
|
2thd |
|
| 5 |
|
neeq1 |
|
| 6 |
|
soeq2 |
|
| 7 |
|
unieq |
|
| 8 |
|
id |
|
| 9 |
7 8
|
eleq12d |
|
| 10 |
6 9
|
imbi12d |
|
| 11 |
5 10
|
imbi12d |
|
| 12 |
|
neeq1 |
|
| 13 |
|
soeq2 |
|
| 14 |
|
unieq |
|
| 15 |
|
id |
|
| 16 |
14 15
|
eleq12d |
|
| 17 |
13 16
|
imbi12d |
|
| 18 |
12 17
|
imbi12d |
|
| 19 |
|
neeq1 |
|
| 20 |
|
soeq2 |
|
| 21 |
|
unieq |
|
| 22 |
|
id |
|
| 23 |
21 22
|
eleq12d |
|
| 24 |
20 23
|
imbi12d |
|
| 25 |
19 24
|
imbi12d |
|
| 26 |
|
unisnv |
|
| 27 |
|
vsnid |
|
| 28 |
26 27
|
eqeltri |
|
| 29 |
|
uneq1 |
|
| 30 |
|
uncom |
|
| 31 |
|
un0 |
|
| 32 |
30 31
|
eqtri |
|
| 33 |
29 32
|
eqtrdi |
|
| 34 |
33
|
unieqd |
|
| 35 |
34 33
|
eleq12d |
|
| 36 |
28 35
|
mpbiri |
|
| 37 |
36
|
a1d |
|
| 38 |
37
|
adantl |
|
| 39 |
|
simpr |
|
| 40 |
|
ssun1 |
|
| 41 |
|
simpl2 |
|
| 42 |
|
soss |
|
| 43 |
40 41 42
|
mpsyl |
|
| 44 |
|
uniun |
|
| 45 |
26
|
uneq2i |
|
| 46 |
44 45
|
eqtri |
|
| 47 |
|
simprr |
|
| 48 |
|
simpl2 |
|
| 49 |
|
elun1 |
|
| 50 |
49
|
ad2antll |
|
| 51 |
|
ssun2 |
|
| 52 |
51 27
|
sselii |
|
| 53 |
52
|
a1i |
|
| 54 |
|
sorpssi |
|
| 55 |
48 50 53 54
|
syl12anc |
|
| 56 |
|
ssequn1 |
|
| 57 |
52
|
a1i |
|
| 58 |
|
eleq1 |
|
| 59 |
57 58
|
imbitrrid |
|
| 60 |
56 59
|
sylbi |
|
| 61 |
60
|
impcom |
|
| 62 |
|
uncom |
|
| 63 |
|
ssequn1 |
|
| 64 |
|
eleq1 |
|
| 65 |
49 64
|
imbitrrid |
|
| 66 |
63 65
|
sylbi |
|
| 67 |
66
|
impcom |
|
| 68 |
62 67
|
eqeltrid |
|
| 69 |
61 68
|
jaodan |
|
| 70 |
47 55 69
|
syl2anc |
|
| 71 |
46 70
|
eqeltrid |
|
| 72 |
71
|
expr |
|
| 73 |
43 72
|
embantd |
|
| 74 |
39 73
|
embantd |
|
| 75 |
38 74
|
pm2.61dane |
|
| 76 |
75
|
3exp |
|
| 77 |
76
|
com24 |
|
| 78 |
4 11 18 25 2 77
|
findcard2 |
|
| 79 |
78
|
3imp21 |
|