Metamath Proof Explorer


Theorem fin23lem34

Description: Lemma for fin23 . Establish induction invariants on Y which parameterizes our contradictory chain of subsets. In this section, h is the hypothetically assumed family of subsets, g is the ground set, and i is the induction function constructed in the previous section. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypotheses fin23lem33.f F=g|a𝒫gωxωasucxaxranarana
fin23lem.f φh:ω1-1V
fin23lem.g φranhG
fin23lem.h φjj:ω1-1VranjGij:ω1-1Vranijranj
fin23lem.i Y=recihω
Assertion fin23lem34 φAωYA:ω1-1VranYAG

Proof

Step Hyp Ref Expression
1 fin23lem33.f F=g|a𝒫gωxωasucxaxranarana
2 fin23lem.f φh:ω1-1V
3 fin23lem.g φranhG
4 fin23lem.h φjj:ω1-1VranjGij:ω1-1Vranijranj
5 fin23lem.i Y=recihω
6 fveq2 a=Ya=Y
7 f1eq1 Ya=YYa:ω1-1VY:ω1-1V
8 6 7 syl a=Ya:ω1-1VY:ω1-1V
9 6 rneqd a=ranYa=ranY
10 9 unieqd a=ranYa=ranY
11 10 sseq1d a=ranYaGranYG
12 8 11 anbi12d a=Ya:ω1-1VranYaGY:ω1-1VranYG
13 12 imbi2d a=φYa:ω1-1VranYaGφY:ω1-1VranYG
14 fveq2 a=bYa=Yb
15 f1eq1 Ya=YbYa:ω1-1VYb:ω1-1V
16 14 15 syl a=bYa:ω1-1VYb:ω1-1V
17 14 rneqd a=branYa=ranYb
18 17 unieqd a=branYa=ranYb
19 18 sseq1d a=branYaGranYbG
20 16 19 anbi12d a=bYa:ω1-1VranYaGYb:ω1-1VranYbG
21 20 imbi2d a=bφYa:ω1-1VranYaGφYb:ω1-1VranYbG
22 fveq2 a=sucbYa=Ysucb
23 f1eq1 Ya=YsucbYa:ω1-1VYsucb:ω1-1V
24 22 23 syl a=sucbYa:ω1-1VYsucb:ω1-1V
25 22 rneqd a=sucbranYa=ranYsucb
26 25 unieqd a=sucbranYa=ranYsucb
27 26 sseq1d a=sucbranYaGranYsucbG
28 24 27 anbi12d a=sucbYa:ω1-1VranYaGYsucb:ω1-1VranYsucbG
29 28 imbi2d a=sucbφYa:ω1-1VranYaGφYsucb:ω1-1VranYsucbG
30 fveq2 a=AYa=YA
31 f1eq1 Ya=YAYa:ω1-1VYA:ω1-1V
32 30 31 syl a=AYa:ω1-1VYA:ω1-1V
33 30 rneqd a=AranYa=ranYA
34 33 unieqd a=AranYa=ranYA
35 34 sseq1d a=AranYaGranYAG
36 32 35 anbi12d a=AYa:ω1-1VranYaGYA:ω1-1VranYAG
37 36 imbi2d a=AφYa:ω1-1VranYaGφYA:ω1-1VranYAG
38 5 fveq1i Y=recihω
39 fr0g hVrecihω=h
40 39 elv recihω=h
41 38 40 eqtri Y=h
42 f1eq1 Y=hY:ω1-1Vh:ω1-1V
43 41 42 ax-mp Y:ω1-1Vh:ω1-1V
44 41 rneqi ranY=ranh
45 44 unieqi ranY=ranh
46 45 sseq1i ranYGranhG
47 43 46 anbi12i Y:ω1-1VranYGh:ω1-1VranhG
48 2 3 47 sylanbrc φY:ω1-1VranYG
49 fvex YbV
50 f1eq1 j=Ybj:ω1-1VYb:ω1-1V
51 rneq j=Ybranj=ranYb
52 51 unieqd j=Ybranj=ranYb
53 52 sseq1d j=YbranjGranYbG
54 50 53 anbi12d j=Ybj:ω1-1VranjGYb:ω1-1VranYbG
55 fveq2 j=Ybij=iYb
56 f1eq1 ij=iYbij:ω1-1ViYb:ω1-1V
57 55 56 syl j=Ybij:ω1-1ViYb:ω1-1V
58 55 rneqd j=Ybranij=raniYb
59 58 unieqd j=Ybranij=raniYb
60 59 52 psseq12d j=YbranijranjraniYbranYb
61 57 60 anbi12d j=Ybij:ω1-1VranijranjiYb:ω1-1VraniYbranYb
62 54 61 imbi12d j=Ybj:ω1-1VranjGij:ω1-1VranijranjYb:ω1-1VranYbGiYb:ω1-1VraniYbranYb
63 49 62 spcv jj:ω1-1VranjGij:ω1-1VranijranjYb:ω1-1VranYbGiYb:ω1-1VraniYbranYb
64 4 63 syl φYb:ω1-1VranYbGiYb:ω1-1VraniYbranYb
65 64 imp φYb:ω1-1VranYbGiYb:ω1-1VraniYbranYb
66 pssss raniYbranYbraniYbranYb
67 sstr raniYbranYbranYbGraniYbG
68 66 67 sylan raniYbranYbranYbGraniYbG
69 68 expcom ranYbGraniYbranYbraniYbG
70 69 anim2d ranYbGiYb:ω1-1VraniYbranYbiYb:ω1-1VraniYbG
71 70 ad2antll φYb:ω1-1VranYbGiYb:ω1-1VraniYbranYbiYb:ω1-1VraniYbG
72 65 71 mpd φYb:ω1-1VranYbGiYb:ω1-1VraniYbG
73 72 3adant1 bωφYb:ω1-1VranYbGiYb:ω1-1VraniYbG
74 frsuc bωrecihωsucb=irecihωb
75 5 fveq1i Ysucb=recihωsucb
76 5 fveq1i Yb=recihωb
77 76 fveq2i iYb=irecihωb
78 74 75 77 3eqtr4g bωYsucb=iYb
79 f1eq1 Ysucb=iYbYsucb:ω1-1ViYb:ω1-1V
80 rneq Ysucb=iYbranYsucb=raniYb
81 80 unieqd Ysucb=iYbranYsucb=raniYb
82 81 sseq1d Ysucb=iYbranYsucbGraniYbG
83 79 82 anbi12d Ysucb=iYbYsucb:ω1-1VranYsucbGiYb:ω1-1VraniYbG
84 78 83 syl bωYsucb:ω1-1VranYsucbGiYb:ω1-1VraniYbG
85 84 3ad2ant1 bωφYb:ω1-1VranYbGYsucb:ω1-1VranYsucbGiYb:ω1-1VraniYbG
86 73 85 mpbird bωφYb:ω1-1VranYbGYsucb:ω1-1VranYsucbG
87 86 3exp bωφYb:ω1-1VranYbGYsucb:ω1-1VranYsucbG
88 87 a2d bωφYb:ω1-1VranYbGφYsucb:ω1-1VranYsucbG
89 13 21 29 37 48 88 finds AωφYA:ω1-1VranYAG
90 89 impcom φAωYA:ω1-1VranYAG