Metamath Proof Explorer


Theorem fin23lem34

Description: Lemma for fin23 . Establish induction invariants on Y which parameterizes our contradictory chain of subsets. In this section, h is the hypothetically assumed family of subsets, g is the ground set, and i is the induction function constructed in the previous section. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypotheses fin23lem33.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
fin23lem.f φ h : ω 1-1 V
fin23lem.g φ ran h G
fin23lem.h φ j j : ω 1-1 V ran j G i j : ω 1-1 V ran i j ran j
fin23lem.i Y = rec i h ω
Assertion fin23lem34 φ A ω Y A : ω 1-1 V ran Y A G

Proof

Step Hyp Ref Expression
1 fin23lem33.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
2 fin23lem.f φ h : ω 1-1 V
3 fin23lem.g φ ran h G
4 fin23lem.h φ j j : ω 1-1 V ran j G i j : ω 1-1 V ran i j ran j
5 fin23lem.i Y = rec i h ω
6 fveq2 a = Y a = Y
7 f1eq1 Y a = Y Y a : ω 1-1 V Y : ω 1-1 V
8 6 7 syl a = Y a : ω 1-1 V Y : ω 1-1 V
9 6 rneqd a = ran Y a = ran Y
10 9 unieqd a = ran Y a = ran Y
11 10 sseq1d a = ran Y a G ran Y G
12 8 11 anbi12d a = Y a : ω 1-1 V ran Y a G Y : ω 1-1 V ran Y G
13 12 imbi2d a = φ Y a : ω 1-1 V ran Y a G φ Y : ω 1-1 V ran Y G
14 fveq2 a = b Y a = Y b
15 f1eq1 Y a = Y b Y a : ω 1-1 V Y b : ω 1-1 V
16 14 15 syl a = b Y a : ω 1-1 V Y b : ω 1-1 V
17 14 rneqd a = b ran Y a = ran Y b
18 17 unieqd a = b ran Y a = ran Y b
19 18 sseq1d a = b ran Y a G ran Y b G
20 16 19 anbi12d a = b Y a : ω 1-1 V ran Y a G Y b : ω 1-1 V ran Y b G
21 20 imbi2d a = b φ Y a : ω 1-1 V ran Y a G φ Y b : ω 1-1 V ran Y b G
22 fveq2 a = suc b Y a = Y suc b
23 f1eq1 Y a = Y suc b Y a : ω 1-1 V Y suc b : ω 1-1 V
24 22 23 syl a = suc b Y a : ω 1-1 V Y suc b : ω 1-1 V
25 22 rneqd a = suc b ran Y a = ran Y suc b
26 25 unieqd a = suc b ran Y a = ran Y suc b
27 26 sseq1d a = suc b ran Y a G ran Y suc b G
28 24 27 anbi12d a = suc b Y a : ω 1-1 V ran Y a G Y suc b : ω 1-1 V ran Y suc b G
29 28 imbi2d a = suc b φ Y a : ω 1-1 V ran Y a G φ Y suc b : ω 1-1 V ran Y suc b G
30 fveq2 a = A Y a = Y A
31 f1eq1 Y a = Y A Y a : ω 1-1 V Y A : ω 1-1 V
32 30 31 syl a = A Y a : ω 1-1 V Y A : ω 1-1 V
33 30 rneqd a = A ran Y a = ran Y A
34 33 unieqd a = A ran Y a = ran Y A
35 34 sseq1d a = A ran Y a G ran Y A G
36 32 35 anbi12d a = A Y a : ω 1-1 V ran Y a G Y A : ω 1-1 V ran Y A G
37 36 imbi2d a = A φ Y a : ω 1-1 V ran Y a G φ Y A : ω 1-1 V ran Y A G
38 5 fveq1i Y = rec i h ω
39 fr0g h V rec i h ω = h
40 39 elv rec i h ω = h
41 38 40 eqtri Y = h
42 f1eq1 Y = h Y : ω 1-1 V h : ω 1-1 V
43 41 42 ax-mp Y : ω 1-1 V h : ω 1-1 V
44 41 rneqi ran Y = ran h
45 44 unieqi ran Y = ran h
46 45 sseq1i ran Y G ran h G
47 43 46 anbi12i Y : ω 1-1 V ran Y G h : ω 1-1 V ran h G
48 2 3 47 sylanbrc φ Y : ω 1-1 V ran Y G
49 fvex Y b V
50 f1eq1 j = Y b j : ω 1-1 V Y b : ω 1-1 V
51 rneq j = Y b ran j = ran Y b
52 51 unieqd j = Y b ran j = ran Y b
53 52 sseq1d j = Y b ran j G ran Y b G
54 50 53 anbi12d j = Y b j : ω 1-1 V ran j G Y b : ω 1-1 V ran Y b G
55 fveq2 j = Y b i j = i Y b
56 f1eq1 i j = i Y b i j : ω 1-1 V i Y b : ω 1-1 V
57 55 56 syl j = Y b i j : ω 1-1 V i Y b : ω 1-1 V
58 55 rneqd j = Y b ran i j = ran i Y b
59 58 unieqd j = Y b ran i j = ran i Y b
60 59 52 psseq12d j = Y b ran i j ran j ran i Y b ran Y b
61 57 60 anbi12d j = Y b i j : ω 1-1 V ran i j ran j i Y b : ω 1-1 V ran i Y b ran Y b
62 54 61 imbi12d j = Y b j : ω 1-1 V ran j G i j : ω 1-1 V ran i j ran j Y b : ω 1-1 V ran Y b G i Y b : ω 1-1 V ran i Y b ran Y b
63 49 62 spcv j j : ω 1-1 V ran j G i j : ω 1-1 V ran i j ran j Y b : ω 1-1 V ran Y b G i Y b : ω 1-1 V ran i Y b ran Y b
64 4 63 syl φ Y b : ω 1-1 V ran Y b G i Y b : ω 1-1 V ran i Y b ran Y b
65 64 imp φ Y b : ω 1-1 V ran Y b G i Y b : ω 1-1 V ran i Y b ran Y b
66 pssss ran i Y b ran Y b ran i Y b ran Y b
67 sstr ran i Y b ran Y b ran Y b G ran i Y b G
68 66 67 sylan ran i Y b ran Y b ran Y b G ran i Y b G
69 68 expcom ran Y b G ran i Y b ran Y b ran i Y b G
70 69 anim2d ran Y b G i Y b : ω 1-1 V ran i Y b ran Y b i Y b : ω 1-1 V ran i Y b G
71 70 ad2antll φ Y b : ω 1-1 V ran Y b G i Y b : ω 1-1 V ran i Y b ran Y b i Y b : ω 1-1 V ran i Y b G
72 65 71 mpd φ Y b : ω 1-1 V ran Y b G i Y b : ω 1-1 V ran i Y b G
73 72 3adant1 b ω φ Y b : ω 1-1 V ran Y b G i Y b : ω 1-1 V ran i Y b G
74 frsuc b ω rec i h ω suc b = i rec i h ω b
75 5 fveq1i Y suc b = rec i h ω suc b
76 5 fveq1i Y b = rec i h ω b
77 76 fveq2i i Y b = i rec i h ω b
78 74 75 77 3eqtr4g b ω Y suc b = i Y b
79 f1eq1 Y suc b = i Y b Y suc b : ω 1-1 V i Y b : ω 1-1 V
80 rneq Y suc b = i Y b ran Y suc b = ran i Y b
81 80 unieqd Y suc b = i Y b ran Y suc b = ran i Y b
82 81 sseq1d Y suc b = i Y b ran Y suc b G ran i Y b G
83 79 82 anbi12d Y suc b = i Y b Y suc b : ω 1-1 V ran Y suc b G i Y b : ω 1-1 V ran i Y b G
84 78 83 syl b ω Y suc b : ω 1-1 V ran Y suc b G i Y b : ω 1-1 V ran i Y b G
85 84 3ad2ant1 b ω φ Y b : ω 1-1 V ran Y b G Y suc b : ω 1-1 V ran Y suc b G i Y b : ω 1-1 V ran i Y b G
86 73 85 mpbird b ω φ Y b : ω 1-1 V ran Y b G Y suc b : ω 1-1 V ran Y suc b G
87 86 3exp b ω φ Y b : ω 1-1 V ran Y b G Y suc b : ω 1-1 V ran Y suc b G
88 87 a2d b ω φ Y b : ω 1-1 V ran Y b G φ Y suc b : ω 1-1 V ran Y suc b G
89 13 21 29 37 48 88 finds A ω φ Y A : ω 1-1 V ran Y A G
90 89 impcom φ A ω Y A : ω 1-1 V ran Y A G