Metamath Proof Explorer


Theorem findcard2OLD

Description: Obsolete version of findcard2 as of 6-Aug-2024. (Contributed by Jeff Madsen, 8-Jul-2010) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses findcard2OLD.1 x=φψ
findcard2OLD.2 x=yφχ
findcard2OLD.3 x=yzφθ
findcard2OLD.4 x=Aφτ
findcard2OLD.5 ψ
findcard2OLD.6 yFinχθ
Assertion findcard2OLD AFinτ

Proof

Step Hyp Ref Expression
1 findcard2OLD.1 x=φψ
2 findcard2OLD.2 x=yφχ
3 findcard2OLD.3 x=yzφθ
4 findcard2OLD.4 x=Aφτ
5 findcard2OLD.5 ψ
6 findcard2OLD.6 yFinχθ
7 isfi xFinwωxw
8 breq2 w=xwx
9 8 imbi1d w=xwφxφ
10 9 albidv w=xxwφxxφ
11 breq2 w=vxwxv
12 11 imbi1d w=vxwφxvφ
13 12 albidv w=vxxwφxxvφ
14 breq2 w=sucvxwxsucv
15 14 imbi1d w=sucvxwφxsucvφ
16 15 albidv w=sucvxxwφxxsucvφ
17 en0 xx=
18 5 1 mpbiri x=φ
19 17 18 sylbi xφ
20 19 ax-gen xxφ
21 nsuceq0 sucv
22 breq1 w=wsucvsucv
23 22 anbi2d w=vωwsucvvωsucv
24 peano1 ω
25 peano2 vωsucvω
26 nneneq ωsucvωsucv=sucv
27 24 25 26 sylancr vωsucv=sucv
28 27 biimpa vωsucv=sucv
29 28 eqcomd vωsucvsucv=
30 23 29 syl6bi w=vωwsucvsucv=
31 30 com12 vωwsucvw=sucv=
32 31 necon3d vωwsucvsucvw
33 21 32 mpi vωwsucvw
34 33 ex vωwsucvw
35 n0 wzzw
36 dif1enOLD vωwsucvzwwzv
37 36 3expia vωwsucvzwwzv
38 snssi zwzw
39 uncom wzz=zwz
40 undif zwzwz=w
41 40 biimpi zwzwz=w
42 39 41 eqtrid zwwzz=w
43 vex wV
44 43 difexi wzV
45 breq1 y=wzyvwzv
46 45 anbi2d y=wzvωyvvωwzv
47 uneq1 y=wzyz=wzz
48 47 sbceq1d y=wz[˙yz/x]˙φ[˙wzz/x]˙φ
49 48 imbi2d y=wzxxvφ[˙yz/x]˙φxxvφ[˙wzz/x]˙φ
50 46 49 imbi12d y=wzvωyvxxvφ[˙yz/x]˙φvωwzvxxvφ[˙wzz/x]˙φ
51 breq1 x=yxvyv
52 51 2 imbi12d x=yxvφyvχ
53 52 spvv xxvφyvχ
54 rspe vωyvvωyv
55 isfi yFinvωyv
56 54 55 sylibr vωyvyFin
57 pm2.27 yvyvχχ
58 57 adantl vωyvyvχχ
59 56 58 6 sylsyld vωyvyvχθ
60 53 59 syl5 vωyvxxvφθ
61 vex yV
62 snex zV
63 61 62 unex yzV
64 63 3 sbcie [˙yz/x]˙φθ
65 60 64 syl6ibr vωyvxxvφ[˙yz/x]˙φ
66 44 50 65 vtocl vωwzvxxvφ[˙wzz/x]˙φ
67 dfsbcq wzz=w[˙wzz/x]˙φ[˙w/x]˙φ
68 67 imbi2d wzz=wxxvφ[˙wzz/x]˙φxxvφ[˙w/x]˙φ
69 66 68 imbitrid wzz=wvωwzvxxvφ[˙w/x]˙φ
70 38 42 69 3syl zwvωwzvxxvφ[˙w/x]˙φ
71 70 expd zwvωwzvxxvφ[˙w/x]˙φ
72 71 com12 vωzwwzvxxvφ[˙w/x]˙φ
73 72 adantr vωwsucvzwwzvxxvφ[˙w/x]˙φ
74 37 73 mpdd vωwsucvzwxxvφ[˙w/x]˙φ
75 74 exlimdv vωwsucvzzwxxvφ[˙w/x]˙φ
76 35 75 biimtrid vωwsucvwxxvφ[˙w/x]˙φ
77 76 ex vωwsucvwxxvφ[˙w/x]˙φ
78 34 77 mpdd vωwsucvxxvφ[˙w/x]˙φ
79 78 com23 vωxxvφwsucv[˙w/x]˙φ
80 79 alrimdv vωxxvφwwsucv[˙w/x]˙φ
81 nfv wxsucvφ
82 nfv xwsucv
83 nfsbc1v x[˙w/x]˙φ
84 82 83 nfim xwsucv[˙w/x]˙φ
85 breq1 x=wxsucvwsucv
86 sbceq1a x=wφ[˙w/x]˙φ
87 85 86 imbi12d x=wxsucvφwsucv[˙w/x]˙φ
88 81 84 87 cbvalv1 xxsucvφwwsucv[˙w/x]˙φ
89 80 88 syl6ibr vωxxvφxxsucvφ
90 10 13 16 20 89 finds1 wωxxwφ
91 90 19.21bi wωxwφ
92 91 rexlimiv wωxwφ
93 7 92 sylbi xFinφ
94 4 93 vtoclga AFinτ