Metamath Proof Explorer


Theorem finexttrb

Description: The extension E of K is finite if and only if E is finite over F and F is finite over K . Corollary 1.3 of Lang , p. 225. (Contributed by Thierry Arnoux, 30-Jul-2023)

Ref Expression
Assertion finexttrb E/FldExtFF/FldExtKE/FinExtKE/FinExtFF/FinExtK

Proof

Step Hyp Ref Expression
1 extdgmul Math input error
2 1 eleq1d Math input error
3 fldexttr E/FldExtFF/FldExtKE/FldExtK
4 brfinext E/FldExtKE/FinExtKE.:.K0
5 3 4 syl E/FldExtFF/FldExtKE/FinExtKE.:.K0
6 brfinext E/FldExtFE/FinExtFE.:.F0
7 brfinext F/FldExtKF/FinExtKF.:.K0
8 6 7 bi2anan9 E/FldExtFF/FldExtKE/FinExtFF/FinExtKE.:.F0F.:.K0
9 extdgcl E/FldExtFE.:.F0*
10 9 adantr E/FldExtFF/FldExtKE.:.F0*
11 extdgcl F/FldExtKF.:.K0*
12 11 adantl E/FldExtFF/FldExtKF.:.K0*
13 extdggt0 E/FldExtF0<E.:.F
14 13 adantr E/FldExtFF/FldExtK0<E.:.F
15 14 gt0ne0d E/FldExtFF/FldExtKE.:.F0
16 extdggt0 F/FldExtK0<F.:.K
17 16 adantl E/FldExtFF/FldExtK0<F.:.K
18 17 gt0ne0d E/FldExtFF/FldExtKF.:.K0
19 nn0xmulclb Math input error
20 10 12 15 18 19 syl22anc Math input error
21 8 20 bitr4d Math input error
22 2 5 21 3bitr4d E/FldExtFF/FldExtKE/FinExtKE/FinExtFF/FinExtK