Metamath Proof Explorer


Theorem finsumvtxdg2sstep

Description: Induction step of finsumvtxdg2size : In a finite pseudograph of finite size, the sum of the degrees of all vertices of the pseudograph is twice the size of the pseudograph if the sum of the degrees of all vertices of the subgraph of the pseudograph not containing one of the vertices is twice the size of the subgraph. (Contributed by AV, 19-Dec-2021)

Ref Expression
Hypotheses finsumvtxdg2sstep.v V=VtxG
finsumvtxdg2sstep.e E=iEdgG
finsumvtxdg2sstep.k K=VN
finsumvtxdg2sstep.i I=idomE|NEi
finsumvtxdg2sstep.p P=EI
finsumvtxdg2sstep.s S=KP
Assertion finsumvtxdg2sstep GUPGraphNVVFinEFinPFinvKVtxDegSv=2PvVVtxDegGv=2E

Proof

Step Hyp Ref Expression
1 finsumvtxdg2sstep.v V=VtxG
2 finsumvtxdg2sstep.e E=iEdgG
3 finsumvtxdg2sstep.k K=VN
4 finsumvtxdg2sstep.i I=idomE|NEi
5 finsumvtxdg2sstep.p P=EI
6 finsumvtxdg2sstep.s S=KP
7 finresfin EFinEIFin
8 7 ad2antll GUPGraphNVVFinEFinEIFin
9 5 8 eqeltrid GUPGraphNVVFinEFinPFin
10 difsnid NVVNN=V
11 10 ad2antlr GUPGraphNVVFinEFinVNN=V
12 11 eqcomd GUPGraphNVVFinEFinV=VNN
13 12 sumeq1d GUPGraphNVVFinEFinvVVtxDegGv=vVNNVtxDegGv
14 diffi VFinVNFin
15 14 adantr VFinEFinVNFin
16 15 adantl GUPGraphNVVFinEFinVNFin
17 simpr GUPGraphNVNV
18 17 adantr GUPGraphNVVFinEFinNV
19 neldifsn ¬NVN
20 19 nelir NVN
21 20 a1i GUPGraphNVVFinEFinNVN
22 dmfi EFindomEFin
23 22 ad2antll GUPGraphNVVFinEFindomEFin
24 10 eleq2d NVvVNNvV
25 24 biimpd NVvVNNvV
26 25 ad2antlr GUPGraphNVVFinEFinvVNNvV
27 26 imp GUPGraphNVVFinEFinvVNNvV
28 eqid domE=domE
29 1 2 28 vtxdgfisnn0 domEFinvVVtxDegGv0
30 23 27 29 syl2an2r GUPGraphNVVFinEFinvVNNVtxDegGv0
31 30 nn0zd GUPGraphNVVFinEFinvVNNVtxDegGv
32 31 ralrimiva GUPGraphNVVFinEFinvVNNVtxDegGv
33 fsumsplitsnun VNFinNVNVNvVNNVtxDegGvvVNNVtxDegGv=vVNVtxDegGv+N/vVtxDegGv
34 16 18 21 32 33 syl121anc GUPGraphNVVFinEFinvVNNVtxDegGv=vVNVtxDegGv+N/vVtxDegGv
35 fveq2 v=NVtxDegGv=VtxDegGN
36 35 adantl GUPGraphNVv=NVtxDegGv=VtxDegGN
37 17 36 csbied GUPGraphNVN/vVtxDegGv=VtxDegGN
38 37 adantr GUPGraphNVVFinEFinN/vVtxDegGv=VtxDegGN
39 38 oveq2d GUPGraphNVVFinEFinvVNVtxDegGv+N/vVtxDegGv=vVNVtxDegGv+VtxDegGN
40 13 34 39 3eqtrd GUPGraphNVVFinEFinvVVtxDegGv=vVNVtxDegGv+VtxDegGN
41 40 adantr GUPGraphNVVFinEFinvKVtxDegSv=2PvVVtxDegGv=vVNVtxDegGv+VtxDegGN
42 fveq2 j=iEj=Ei
43 42 eleq2d j=iNEjNEi
44 43 cbvrabv jdomE|NEj=idomE|NEi
45 1 2 3 4 5 6 44 finsumvtxdg2ssteplem2 GUPGraphNVVFinEFinVtxDegGN=jdomE|NEj+idomE|Ei=N
46 45 oveq2d GUPGraphNVVFinEFinvVNVtxDegGv+VtxDegGN=vVNVtxDegGv+jdomE|NEj+idomE|Ei=N
47 46 adantr GUPGraphNVVFinEFinvKVtxDegSv=2PvVNVtxDegGv+VtxDegGN=vVNVtxDegGv+jdomE|NEj+idomE|Ei=N
48 1 2 3 4 5 6 44 finsumvtxdg2ssteplem4 GUPGraphNVVFinEFinvKVtxDegSv=2PvVNVtxDegGv+jdomE|NEj+idomE|Ei=N=2P+jdomE|NEj
49 44 fveq2i jdomE|NEj=idomE|NEi
50 49 oveq2i P+jdomE|NEj=P+idomE|NEi
51 50 oveq2i 2P+jdomE|NEj=2P+idomE|NEi
52 51 a1i GUPGraphNVVFinEFinvKVtxDegSv=2P2P+jdomE|NEj=2P+idomE|NEi
53 47 48 52 3eqtrd GUPGraphNVVFinEFinvKVtxDegSv=2PvVNVtxDegGv+VtxDegGN=2P+idomE|NEi
54 eqid idomE|NEi=idomE|NEi
55 1 2 3 4 5 6 54 finsumvtxdg2ssteplem1 GUPGraphNVVFinEFinE=P+idomE|NEi
56 55 oveq2d GUPGraphNVVFinEFin2E=2P+idomE|NEi
57 56 eqcomd GUPGraphNVVFinEFin2P+idomE|NEi=2E
58 57 adantr GUPGraphNVVFinEFinvKVtxDegSv=2P2P+idomE|NEi=2E
59 41 53 58 3eqtrd GUPGraphNVVFinEFinvKVtxDegSv=2PvVVtxDegGv=2E
60 59 ex GUPGraphNVVFinEFinvKVtxDegSv=2PvVVtxDegGv=2E
61 9 60 embantd GUPGraphNVVFinEFinPFinvKVtxDegSv=2PvVVtxDegGv=2E