| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sumvtxdg2size.v |  | 
						
							| 2 |  | sumvtxdg2size.i |  | 
						
							| 3 |  | sumvtxdg2size.d |  | 
						
							| 4 |  | upgrop |  | 
						
							| 5 |  | fvex |  | 
						
							| 6 |  | fvex |  | 
						
							| 7 | 6 | resex |  | 
						
							| 8 |  | eleq1 |  | 
						
							| 9 | 8 | adantl |  | 
						
							| 10 |  | simpl |  | 
						
							| 11 |  | oveq12 |  | 
						
							| 12 | 11 | fveq1d |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 | 10 13 | sumeq12dv |  | 
						
							| 15 |  | fveq2 |  | 
						
							| 16 | 15 | oveq2d |  | 
						
							| 17 | 16 | adantl |  | 
						
							| 18 | 14 17 | eqeq12d |  | 
						
							| 19 | 9 18 | imbi12d |  | 
						
							| 20 |  | eleq1 |  | 
						
							| 21 | 20 | adantl |  | 
						
							| 22 |  | simpl |  | 
						
							| 23 |  | oveq12 |  | 
						
							| 24 |  | df-ov |  | 
						
							| 25 | 23 24 | eqtrdi |  | 
						
							| 26 | 25 | fveq1d |  | 
						
							| 27 | 26 | adantr |  | 
						
							| 28 | 22 27 | sumeq12dv |  | 
						
							| 29 |  | fveq2 |  | 
						
							| 30 | 29 | oveq2d |  | 
						
							| 31 | 30 | adantl |  | 
						
							| 32 | 28 31 | eqeq12d |  | 
						
							| 33 | 21 32 | imbi12d |  | 
						
							| 34 |  | vex |  | 
						
							| 35 |  | vex |  | 
						
							| 36 | 34 35 | opvtxfvi |  | 
						
							| 37 | 36 | eqcomi |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 |  | eqid |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 | 37 38 39 40 | upgrres |  | 
						
							| 42 |  | eleq1 |  | 
						
							| 43 | 42 | adantl |  | 
						
							| 44 |  | simpl |  | 
						
							| 45 |  | opeq12 |  | 
						
							| 46 | 45 | fveq2d |  | 
						
							| 47 | 46 | fveq1d |  | 
						
							| 48 | 47 | adantr |  | 
						
							| 49 | 44 48 | sumeq12dv |  | 
						
							| 50 |  | fveq2 |  | 
						
							| 51 | 50 | oveq2d |  | 
						
							| 52 | 51 | adantl |  | 
						
							| 53 | 49 52 | eqeq12d |  | 
						
							| 54 | 43 53 | imbi12d |  | 
						
							| 55 |  | hasheq0 |  | 
						
							| 56 | 55 | elv |  | 
						
							| 57 |  | 2t0e0 |  | 
						
							| 58 | 57 | a1i |  | 
						
							| 59 | 34 35 | opiedgfvi |  | 
						
							| 60 | 59 | eqcomi |  | 
						
							| 61 |  | upgruhgr |  | 
						
							| 62 | 61 | adantr |  | 
						
							| 63 | 37 | eqeq1i |  | 
						
							| 64 |  | uhgr0vb |  | 
						
							| 65 | 63 64 | sylan2b |  | 
						
							| 66 | 62 65 | mpbid |  | 
						
							| 67 | 60 66 | eqtrid |  | 
						
							| 68 |  | hasheq0 |  | 
						
							| 69 | 68 | elv |  | 
						
							| 70 | 67 69 | sylibr |  | 
						
							| 71 | 70 | oveq2d |  | 
						
							| 72 |  | sumeq1 |  | 
						
							| 73 |  | sum0 |  | 
						
							| 74 | 72 73 | eqtrdi |  | 
						
							| 75 | 74 | adantl |  | 
						
							| 76 | 58 71 75 | 3eqtr4rd |  | 
						
							| 77 | 56 76 | sylan2b |  | 
						
							| 78 | 77 | a1d |  | 
						
							| 79 |  | eleq1 |  | 
						
							| 80 | 79 | eqcoms |  | 
						
							| 81 | 80 | 3ad2ant2 |  | 
						
							| 82 |  | hashclb |  | 
						
							| 83 | 82 | biimprd |  | 
						
							| 84 | 83 | elv |  | 
						
							| 85 |  | eqid |  | 
						
							| 86 |  | eqid |  | 
						
							| 87 | 59 | dmeqi |  | 
						
							| 88 | 87 | rabeqi |  | 
						
							| 89 |  | eqidd |  | 
						
							| 90 | 59 | a1i |  | 
						
							| 91 | 90 | fveq1d |  | 
						
							| 92 | 89 91 | neleq12d |  | 
						
							| 93 | 92 | rabbiia |  | 
						
							| 94 | 88 93 | eqtri |  | 
						
							| 95 | 59 94 | reseq12i |  | 
						
							| 96 | 37 60 85 86 95 40 | finsumvtxdg2sstep |  | 
						
							| 97 |  | df-ov |  | 
						
							| 98 | 97 | fveq1i |  | 
						
							| 99 | 98 | a1i |  | 
						
							| 100 | 99 | sumeq2i |  | 
						
							| 101 | 100 | eqeq1i |  | 
						
							| 102 | 96 101 | imbitrrdi |  | 
						
							| 103 | 102 | exp32 |  | 
						
							| 104 | 103 | com34 |  | 
						
							| 105 | 104 | 3adant2 |  | 
						
							| 106 | 84 105 | syl5 |  | 
						
							| 107 | 81 106 | sylbid |  | 
						
							| 108 | 107 | impcom |  | 
						
							| 109 | 108 | imp |  | 
						
							| 110 | 5 7 19 33 41 54 78 109 | opfi1ind |  | 
						
							| 111 | 110 | ex |  | 
						
							| 112 | 4 111 | syl |  | 
						
							| 113 | 1 | eleq1i |  | 
						
							| 114 | 113 | a1i |  | 
						
							| 115 | 2 | eleq1i |  | 
						
							| 116 | 115 | a1i |  | 
						
							| 117 | 1 | a1i |  | 
						
							| 118 |  | vtxdgop |  | 
						
							| 119 | 3 118 | eqtrid |  | 
						
							| 120 | 119 | fveq1d |  | 
						
							| 121 | 120 | adantr |  | 
						
							| 122 | 117 121 | sumeq12dv |  | 
						
							| 123 | 2 | fveq2i |  | 
						
							| 124 | 123 | oveq2i |  | 
						
							| 125 | 124 | a1i |  | 
						
							| 126 | 122 125 | eqeq12d |  | 
						
							| 127 | 116 126 | imbi12d |  | 
						
							| 128 | 112 114 127 | 3imtr4d |  | 
						
							| 129 | 128 | 3imp |  |