Metamath Proof Explorer


Theorem flimsncls

Description: If A is a limit point of the filter F , then all the points which specialize A (in the specialization preorder) are also limit points. Thus, the set of limit points is a union of closed sets (although this is only nontrivial for non-T1 spaces). (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Assertion flimsncls AJfLimFclsJAJfLimF

Proof

Step Hyp Ref Expression
1 flimtop AJfLimFJTop
2 eqid J=J
3 2 flimelbas AJfLimFAJ
4 3 snssd AJfLimFAJ
5 2 clsss3 JTopAJclsJAJ
6 1 4 5 syl2anc AJfLimFclsJAJ
7 6 sselda AJfLimFxclsJAxJ
8 simpll AJfLimFxclsJAyJxyAJfLimF
9 8 1 syl AJfLimFxclsJAyJxyJTop
10 simprl AJfLimFxclsJAyJxyyJ
11 1 adantr AJfLimFxclsJAJTop
12 4 adantr AJfLimFxclsJAAJ
13 simpr AJfLimFxclsJAxclsJA
14 11 12 13 3jca AJfLimFxclsJAJTopAJxclsJA
15 2 clsndisj JTopAJxclsJAyJxyyA
16 disjsn yA=¬Ay
17 16 necon2abii AyyA
18 15 17 sylibr JTopAJxclsJAyJxyAy
19 14 18 sylan AJfLimFxclsJAyJxyAy
20 opnneip JTopyJAyyneiJA
21 9 10 19 20 syl3anc AJfLimFxclsJAyJxyyneiJA
22 flimnei AJfLimFyneiJAyF
23 8 21 22 syl2anc AJfLimFxclsJAyJxyyF
24 23 expr AJfLimFxclsJAyJxyyF
25 24 ralrimiva AJfLimFxclsJAyJxyyF
26 toptopon2 JTopJTopOnJ
27 11 26 sylib AJfLimFxclsJAJTopOnJ
28 2 flimfil AJfLimFFFilJ
29 28 adantr AJfLimFxclsJAFFilJ
30 flimopn JTopOnJFFilJxJfLimFxJyJxyyF
31 27 29 30 syl2anc AJfLimFxclsJAxJfLimFxJyJxyyF
32 7 25 31 mpbir2and AJfLimFxclsJAxJfLimF
33 32 ex AJfLimFxclsJAxJfLimF
34 33 ssrdv AJfLimFclsJAJfLimF