Description: If A is a limit point of the filter F , then all the points which specialize A (in the specialization preorder) are also limit points. Thus, the set of limit points is a union of closed sets (although this is only nontrivial for non-T1 spaces). (Contributed by Mario Carneiro, 20-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | flimsncls | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flimtop | |
|
2 | eqid | |
|
3 | 2 | flimelbas | |
4 | 3 | snssd | |
5 | 2 | clsss3 | |
6 | 1 4 5 | syl2anc | |
7 | 6 | sselda | |
8 | simpll | |
|
9 | 8 1 | syl | |
10 | simprl | |
|
11 | 1 | adantr | |
12 | 4 | adantr | |
13 | simpr | |
|
14 | 11 12 13 | 3jca | |
15 | 2 | clsndisj | |
16 | disjsn | |
|
17 | 16 | necon2abii | |
18 | 15 17 | sylibr | |
19 | 14 18 | sylan | |
20 | opnneip | |
|
21 | 9 10 19 20 | syl3anc | |
22 | flimnei | |
|
23 | 8 21 22 | syl2anc | |
24 | 23 | expr | |
25 | 24 | ralrimiva | |
26 | toptopon2 | |
|
27 | 11 26 | sylib | |
28 | 2 | flimfil | |
29 | 28 | adantr | |
30 | flimopn | |
|
31 | 27 29 30 | syl2anc | |
32 | 7 25 31 | mpbir2and | |
33 | 32 | ex | |
34 | 33 | ssrdv | |