Description: Functionality, domain and codomain of a class given by the maps-to notation, where B ( x ) is not constant but depends on x . (Contributed by NM, 29-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fmpox.1 | |
|
Assertion | fmpox | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpox.1 | |
|
2 | vex | |
|
3 | vex | |
|
4 | 2 3 | op1std | |
5 | 4 | csbeq1d | |
6 | 2 3 | op2ndd | |
7 | 6 | csbeq1d | |
8 | 7 | csbeq2dv | |
9 | 5 8 | eqtrd | |
10 | 9 | eleq1d | |
11 | 10 | raliunxp | |
12 | nfv | |
|
13 | nfv | |
|
14 | nfv | |
|
15 | nfcsb1v | |
|
16 | 15 | nfcri | |
17 | 14 16 | nfan | |
18 | nfcsb1v | |
|
19 | 18 | nfeq2 | |
20 | 17 19 | nfan | |
21 | nfv | |
|
22 | nfcv | |
|
23 | nfcsb1v | |
|
24 | 22 23 | nfcsbw | |
25 | 24 | nfeq2 | |
26 | 21 25 | nfan | |
27 | eleq1w | |
|
28 | 27 | adantr | |
29 | eleq1w | |
|
30 | csbeq1a | |
|
31 | 30 | eleq2d | |
32 | 29 31 | sylan9bbr | |
33 | 28 32 | anbi12d | |
34 | csbeq1a | |
|
35 | csbeq1a | |
|
36 | 34 35 | sylan9eqr | |
37 | 36 | eqeq2d | |
38 | 33 37 | anbi12d | |
39 | 12 13 20 26 38 | cbvoprab12 | |
40 | df-mpo | |
|
41 | df-mpo | |
|
42 | 39 40 41 | 3eqtr4i | |
43 | 9 | mpomptx | |
44 | 42 1 43 | 3eqtr4i | |
45 | 44 | fmpt | |
46 | 11 45 | bitr3i | |
47 | nfv | |
|
48 | 18 | nfel1 | |
49 | 15 48 | nfralw | |
50 | nfv | |
|
51 | 23 | nfel1 | |
52 | 34 | eleq1d | |
53 | 50 51 52 | cbvralw | |
54 | 35 | eleq1d | |
55 | 30 54 | raleqbidv | |
56 | 53 55 | bitrid | |
57 | 47 49 56 | cbvralw | |
58 | nfcv | |
|
59 | nfcv | |
|
60 | 59 15 | nfxp | |
61 | sneq | |
|
62 | 61 30 | xpeq12d | |
63 | 58 60 62 | cbviun | |
64 | 63 | feq2i | |
65 | 46 57 64 | 3bitr4i | |