Metamath Proof Explorer


Theorem fmpox

Description: Functionality, domain and codomain of a class given by the maps-to notation, where B ( x ) is not constant but depends on x . (Contributed by NM, 29-Dec-2014)

Ref Expression
Hypothesis fmpox.1 F=xA,yBC
Assertion fmpox xAyBCDF:xAx×BD

Proof

Step Hyp Ref Expression
1 fmpox.1 F=xA,yBC
2 vex zV
3 vex wV
4 2 3 op1std v=zw1stv=z
5 4 csbeq1d v=zw1stv/x2ndv/yC=z/x2ndv/yC
6 2 3 op2ndd v=zw2ndv=w
7 6 csbeq1d v=zw2ndv/yC=w/yC
8 7 csbeq2dv v=zwz/x2ndv/yC=z/xw/yC
9 5 8 eqtrd v=zw1stv/x2ndv/yC=z/xw/yC
10 9 eleq1d v=zw1stv/x2ndv/yCDz/xw/yCD
11 10 raliunxp vzAz×z/xB1stv/x2ndv/yCDzAwz/xBz/xw/yCD
12 nfv zxAyBv=C
13 nfv wxAyBv=C
14 nfv xzA
15 nfcsb1v _xz/xB
16 15 nfcri xwz/xB
17 14 16 nfan xzAwz/xB
18 nfcsb1v _xz/xw/yC
19 18 nfeq2 xv=z/xw/yC
20 17 19 nfan xzAwz/xBv=z/xw/yC
21 nfv yzAwz/xB
22 nfcv _yz
23 nfcsb1v _yw/yC
24 22 23 nfcsbw _yz/xw/yC
25 24 nfeq2 yv=z/xw/yC
26 21 25 nfan yzAwz/xBv=z/xw/yC
27 eleq1w x=zxAzA
28 27 adantr x=zy=wxAzA
29 eleq1w y=wyBwB
30 csbeq1a x=zB=z/xB
31 30 eleq2d x=zwBwz/xB
32 29 31 sylan9bbr x=zy=wyBwz/xB
33 28 32 anbi12d x=zy=wxAyBzAwz/xB
34 csbeq1a y=wC=w/yC
35 csbeq1a x=zw/yC=z/xw/yC
36 34 35 sylan9eqr x=zy=wC=z/xw/yC
37 36 eqeq2d x=zy=wv=Cv=z/xw/yC
38 33 37 anbi12d x=zy=wxAyBv=CzAwz/xBv=z/xw/yC
39 12 13 20 26 38 cbvoprab12 xyv|xAyBv=C=zwv|zAwz/xBv=z/xw/yC
40 df-mpo xA,yBC=xyv|xAyBv=C
41 df-mpo zA,wz/xBz/xw/yC=zwv|zAwz/xBv=z/xw/yC
42 39 40 41 3eqtr4i xA,yBC=zA,wz/xBz/xw/yC
43 9 mpomptx vzAz×z/xB1stv/x2ndv/yC=zA,wz/xBz/xw/yC
44 42 1 43 3eqtr4i F=vzAz×z/xB1stv/x2ndv/yC
45 44 fmpt vzAz×z/xB1stv/x2ndv/yCDF:zAz×z/xBD
46 11 45 bitr3i zAwz/xBz/xw/yCDF:zAz×z/xBD
47 nfv zyBCD
48 18 nfel1 xz/xw/yCD
49 15 48 nfralw xwz/xBz/xw/yCD
50 nfv wCD
51 23 nfel1 yw/yCD
52 34 eleq1d y=wCDw/yCD
53 50 51 52 cbvralw yBCDwBw/yCD
54 35 eleq1d x=zw/yCDz/xw/yCD
55 30 54 raleqbidv x=zwBw/yCDwz/xBz/xw/yCD
56 53 55 bitrid x=zyBCDwz/xBz/xw/yCD
57 47 49 56 cbvralw xAyBCDzAwz/xBz/xw/yCD
58 nfcv _zx×B
59 nfcv _xz
60 59 15 nfxp _xz×z/xB
61 sneq x=zx=z
62 61 30 xpeq12d x=zx×B=z×z/xB
63 58 60 62 cbviun xAx×B=zAz×z/xB
64 63 feq2i F:xAx×BDF:zAz×z/xBD
65 46 57 64 3bitr4i xAyBCDF:xAx×BD