Metamath Proof Explorer


Theorem fnejoin1

Description: Join of equivalence classes under the fineness relation-part one. (Contributed by Jeff Hankins, 8-Oct-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion fnejoin1 XVySX=yASAFneifS=XS

Proof

Step Hyp Ref Expression
1 elssuni ASAS
2 1 3ad2ant3 XVySX=yASAS
3 2 unissd XVySX=yASAS
4 eqimss2 X=yyX
5 sspwuni y𝒫XyX
6 4 5 sylibr X=yy𝒫X
7 6 ralimi ySX=yySy𝒫X
8 7 3ad2ant2 XVySX=yASySy𝒫X
9 unissb S𝒫XySy𝒫X
10 8 9 sylibr XVySX=yASS𝒫X
11 sspwuni S𝒫XSX
12 10 11 sylib XVySX=yASSX
13 unieq y=Ay=A
14 13 eqeq2d y=AX=yX=A
15 14 rspccva ySX=yASX=A
16 15 3adant1 XVySX=yASX=A
17 12 16 sseqtrd XVySX=yASSA
18 3 17 eqssd XVySX=yASA=S
19 pwexg XV𝒫XV
20 19 3ad2ant1 XVySX=yAS𝒫XV
21 20 10 ssexd XVySX=yASSV
22 bastg SVStopGenS
23 21 22 syl XVySX=yASStopGenS
24 2 23 sstrd XVySX=yASAtopGenS
25 eqid A=A
26 eqid S=S
27 25 26 isfne4 AFneSA=SAtopGenS
28 18 24 27 sylanbrc XVySX=yASAFneS
29 ne0i ASS
30 29 3ad2ant3 XVySX=yASS
31 ifnefalse SifS=XS=S
32 30 31 syl XVySX=yASifS=XS=S
33 28 32 breqtrrd XVySX=yASAFneifS=XS