Metamath Proof Explorer


Theorem fpwwe2lem6

Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 18-May-2015) (Revised by AV, 20-Jul-2024)

Ref Expression
Hypotheses fpwwe2.1 W=xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=y
fpwwe2.2 φAV
fpwwe2.3 φxArx×xrWexxFrA
fpwwe2lem8.x φXWR
fpwwe2lem8.y φYWS
fpwwe2lem8.m M=OrdIsoRX
fpwwe2lem8.n N=OrdIsoSY
fpwwe2lem5.1 φBdomM
fpwwe2lem5.2 φBdomN
fpwwe2lem5.3 φMB=NB
Assertion fpwwe2lem6 φCRMBCSNBDRMBCRDCSD

Proof

Step Hyp Ref Expression
1 fpwwe2.1 W=xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=y
2 fpwwe2.2 φAV
3 fpwwe2.3 φxArx×xrWexxFrA
4 fpwwe2lem8.x φXWR
5 fpwwe2lem8.y φYWS
6 fpwwe2lem8.m M=OrdIsoRX
7 fpwwe2lem8.n N=OrdIsoSY
8 fpwwe2lem5.1 φBdomM
9 fpwwe2lem5.2 φBdomN
10 fpwwe2lem5.3 φMB=NB
11 1 relopabiv RelW
12 11 brrelex1i YWSYV
13 5 12 syl φYV
14 1 2 fpwwe2lem2 φYWSYASY×YSWeYyY[˙S-1y/u]˙uFSu×u=y
15 5 14 mpbid φYASY×YSWeYyY[˙S-1y/u]˙uFSu×u=y
16 15 simprld φSWeY
17 7 oiiso YVSWeYNIsomE,SdomNY
18 13 16 17 syl2anc φNIsomE,SdomNY
19 18 adantr φCRMBNIsomE,SdomNY
20 isof1o NIsomE,SdomNYN:domN1-1 ontoY
21 19 20 syl φCRMBN:domN1-1 ontoY
22 1 2 3 4 5 6 7 8 9 10 fpwwe2lem5 φCRMBCXCYM-1C=N-1C
23 22 simp2d φCRMBCY
24 f1ocnvfv2 N:domN1-1 ontoYCYNN-1C=C
25 21 23 24 syl2anc φCRMBNN-1C=C
26 22 simp3d φCRMBM-1C=N-1C
27 11 brrelex1i XWRXV
28 4 27 syl φXV
29 1 2 fpwwe2lem2 φXWRXARX×XRWeXyX[˙R-1y/u]˙uFRu×u=y
30 4 29 mpbid φXARX×XRWeXyX[˙R-1y/u]˙uFRu×u=y
31 30 simprld φRWeX
32 6 oiiso XVRWeXMIsomE,RdomMX
33 28 31 32 syl2anc φMIsomE,RdomMX
34 33 adantr φCRMBMIsomE,RdomMX
35 isof1o MIsomE,RdomMXM:domM1-1 ontoX
36 34 35 syl φCRMBM:domM1-1 ontoX
37 22 simp1d φCRMBCX
38 f1ocnvfv2 M:domM1-1 ontoXCXMM-1C=C
39 36 37 38 syl2anc φCRMBMM-1C=C
40 simpr φCRMBCRMB
41 39 40 eqbrtrd φCRMBMM-1CRMB
42 f1ocnv M:domM1-1 ontoXM-1:X1-1 ontodomM
43 f1of M-1:X1-1 ontodomMM-1:XdomM
44 36 42 43 3syl φCRMBM-1:XdomM
45 44 37 ffvelcdmd φCRMBM-1CdomM
46 8 adantr φCRMBBdomM
47 isorel MIsomE,RdomMXM-1CdomMBdomMM-1CEBMM-1CRMB
48 34 45 46 47 syl12anc φCRMBM-1CEBMM-1CRMB
49 41 48 mpbird φCRMBM-1CEB
50 26 49 eqbrtrrd φCRMBN-1CEB
51 f1ocnv N:domN1-1 ontoYN-1:Y1-1 ontodomN
52 f1of N-1:Y1-1 ontodomNN-1:YdomN
53 21 51 52 3syl φCRMBN-1:YdomN
54 53 23 ffvelcdmd φCRMBN-1CdomN
55 9 adantr φCRMBBdomN
56 isorel NIsomE,SdomNYN-1CdomNBdomNN-1CEBNN-1CSNB
57 19 54 55 56 syl12anc φCRMBN-1CEBNN-1CSNB
58 50 57 mpbid φCRMBNN-1CSNB
59 25 58 eqbrtrrd φCRMBCSNB
60 26 adantrr φCRMBDRMBM-1C=N-1C
61 1 2 3 4 5 6 7 8 9 10 fpwwe2lem5 φDRMBDXDYM-1D=N-1D
62 61 simp3d φDRMBM-1D=N-1D
63 62 adantrl φCRMBDRMBM-1D=N-1D
64 60 63 breq12d φCRMBDRMBM-1CEM-1DN-1CEN-1D
65 33 adantr φCRMBDRMBMIsomE,RdomMX
66 isocnv MIsomE,RdomMXM-1IsomR,EXdomM
67 65 66 syl φCRMBDRMBM-1IsomR,EXdomM
68 37 adantrr φCRMBDRMBCX
69 30 simplrd φRX×X
70 69 ssbrd φDRMBDX×XMB
71 70 imp φDRMBDX×XMB
72 brxp DX×XMBDXMBX
73 72 simplbi DX×XMBDX
74 71 73 syl φDRMBDX
75 74 adantrl φCRMBDRMBDX
76 isorel M-1IsomR,EXdomMCXDXCRDM-1CEM-1D
77 67 68 75 76 syl12anc φCRMBDRMBCRDM-1CEM-1D
78 18 adantr φCRMBDRMBNIsomE,SdomNY
79 isocnv NIsomE,SdomNYN-1IsomS,EYdomN
80 78 79 syl φCRMBDRMBN-1IsomS,EYdomN
81 23 adantrr φCRMBDRMBCY
82 61 simp2d φDRMBDY
83 82 adantrl φCRMBDRMBDY
84 isorel N-1IsomS,EYdomNCYDYCSDN-1CEN-1D
85 80 81 83 84 syl12anc φCRMBDRMBCSDN-1CEN-1D
86 64 77 85 3bitr4d φCRMBDRMBCRDCSD
87 86 expr φCRMBDRMBCRDCSD
88 59 87 jca φCRMBCSNBDRMBCRDCSD