| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgpup3.g |  | 
						
							| 2 |  | frgpup3.b |  | 
						
							| 3 |  | frgpup3.u |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 |  | simp1 |  | 
						
							| 7 |  | simp2 |  | 
						
							| 8 |  | simp3 |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 2 4 5 6 7 8 9 10 1 11 12 | frgpup1 |  | 
						
							| 14 | 6 | adantr |  | 
						
							| 15 | 7 | adantr |  | 
						
							| 16 | 8 | adantr |  | 
						
							| 17 |  | simpr |  | 
						
							| 18 | 2 4 5 14 15 16 9 10 1 11 12 3 17 | frgpup2 |  | 
						
							| 19 | 18 | mpteq2dva |  | 
						
							| 20 | 11 2 | ghmf |  | 
						
							| 21 | 13 20 | syl |  | 
						
							| 22 | 10 3 1 11 | vrgpf |  | 
						
							| 23 | 7 22 | syl |  | 
						
							| 24 |  | fcompt |  | 
						
							| 25 | 21 23 24 | syl2anc |  | 
						
							| 26 | 8 | feqmptd |  | 
						
							| 27 | 19 25 26 | 3eqtr4d |  | 
						
							| 28 | 6 | adantr |  | 
						
							| 29 | 7 | adantr |  | 
						
							| 30 | 8 | adantr |  | 
						
							| 31 |  | simprl |  | 
						
							| 32 |  | simprr |  | 
						
							| 33 | 2 4 5 28 29 30 9 10 1 11 12 3 31 32 | frgpup3lem |  | 
						
							| 34 | 33 | expr |  | 
						
							| 35 | 34 | ralrimiva |  | 
						
							| 36 |  | coeq1 |  | 
						
							| 37 | 36 | eqeq1d |  | 
						
							| 38 | 37 | eqreu |  | 
						
							| 39 | 13 27 35 38 | syl3anc |  |