Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by Mario Carneiro, 28-Feb-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frgpup3.g | |
|
frgpup3.b | |
||
frgpup3.u | |
||
Assertion | frgpup3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpup3.g | |
|
2 | frgpup3.b | |
|
3 | frgpup3.u | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | simp1 | |
|
7 | simp2 | |
|
8 | simp3 | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | 2 4 5 6 7 8 9 10 1 11 12 | frgpup1 | |
14 | 6 | adantr | |
15 | 7 | adantr | |
16 | 8 | adantr | |
17 | simpr | |
|
18 | 2 4 5 14 15 16 9 10 1 11 12 3 17 | frgpup2 | |
19 | 18 | mpteq2dva | |
20 | 11 2 | ghmf | |
21 | 13 20 | syl | |
22 | 10 3 1 11 | vrgpf | |
23 | 7 22 | syl | |
24 | fcompt | |
|
25 | 21 23 24 | syl2anc | |
26 | 8 | feqmptd | |
27 | 19 25 26 | 3eqtr4d | |
28 | 6 | adantr | |
29 | 7 | adantr | |
30 | 8 | adantr | |
31 | simprl | |
|
32 | simprr | |
|
33 | 2 4 5 28 29 30 9 10 1 11 12 3 31 32 | frgpup3lem | |
34 | 33 | expr | |
35 | 34 | ralrimiva | |
36 | coeq1 | |
|
37 | 36 | eqeq1d | |
38 | 37 | eqreu | |
39 | 13 27 35 38 | syl3anc | |