Metamath Proof Explorer


Theorem frgpup3

Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by Mario Carneiro, 28-Feb-2016)

Ref Expression
Hypotheses frgpup3.g G=freeGrpI
frgpup3.b B=BaseH
frgpup3.u U=varFGrpI
Assertion frgpup3 HGrpIVF:IB∃!mGGrpHomHmU=F

Proof

Step Hyp Ref Expression
1 frgpup3.g G=freeGrpI
2 frgpup3.b B=BaseH
3 frgpup3.u U=varFGrpI
4 eqid invgH=invgH
5 eqid yI,z2𝑜ifz=FyinvgHFy=yI,z2𝑜ifz=FyinvgHFy
6 simp1 HGrpIVF:IBHGrp
7 simp2 HGrpIVF:IBIV
8 simp3 HGrpIVF:IBF:IB
9 eqid IWordI×2𝑜=IWordI×2𝑜
10 eqid ~FGI=~FGI
11 eqid BaseG=BaseG
12 eqid rangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFyg=rangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFyg
13 2 4 5 6 7 8 9 10 1 11 12 frgpup1 HGrpIVF:IBrangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFygGGrpHomH
14 6 adantr HGrpIVF:IBkIHGrp
15 7 adantr HGrpIVF:IBkIIV
16 8 adantr HGrpIVF:IBkIF:IB
17 simpr HGrpIVF:IBkIkI
18 2 4 5 14 15 16 9 10 1 11 12 3 17 frgpup2 HGrpIVF:IBkIrangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFygUk=Fk
19 18 mpteq2dva HGrpIVF:IBkIrangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFygUk=kIFk
20 11 2 ghmf rangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFygGGrpHomHrangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFyg:BaseGB
21 13 20 syl HGrpIVF:IBrangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFyg:BaseGB
22 10 3 1 11 vrgpf IVU:IBaseG
23 7 22 syl HGrpIVF:IBU:IBaseG
24 fcompt rangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFyg:BaseGBU:IBaseGrangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFygU=kIrangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFygUk
25 21 23 24 syl2anc HGrpIVF:IBrangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFygU=kIrangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFygUk
26 8 feqmptd HGrpIVF:IBF=kIFk
27 19 25 26 3eqtr4d HGrpIVF:IBrangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFygU=F
28 6 adantr HGrpIVF:IBmGGrpHomHmU=FHGrp
29 7 adantr HGrpIVF:IBmGGrpHomHmU=FIV
30 8 adantr HGrpIVF:IBmGGrpHomHmU=FF:IB
31 simprl HGrpIVF:IBmGGrpHomHmU=FmGGrpHomH
32 simprr HGrpIVF:IBmGGrpHomHmU=FmU=F
33 2 4 5 28 29 30 9 10 1 11 12 3 31 32 frgpup3lem HGrpIVF:IBmGGrpHomHmU=Fm=rangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFyg
34 33 expr HGrpIVF:IBmGGrpHomHmU=Fm=rangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFyg
35 34 ralrimiva HGrpIVF:IBmGGrpHomHmU=Fm=rangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFyg
36 coeq1 m=rangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFygmU=rangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFygU
37 36 eqeq1d m=rangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFygmU=FrangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFygU=F
38 37 eqreu rangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFygGGrpHomHrangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFygU=FmGGrpHomHmU=Fm=rangIWordI×2𝑜g~FGIHyI,z2𝑜ifz=FyinvgHFyg∃!mGGrpHomHmU=F
39 13 27 35 38 syl3anc HGrpIVF:IB∃!mGGrpHomHmU=F