Metamath Proof Explorer


Theorem frgrncvvdeqlem8

Description: Lemma 8 for frgrncvvdeq . This corresponds to statement 2 in Huneke p. 1: "The map is one-to-one since z in N(x) is uniquely determined as the common neighbor of x and a(x)". (Contributed by Alexander van der Vekens, 23-Dec-2017) (Revised by AV, 10-May-2021) (Revised by AV, 30-Dec-2021)

Ref Expression
Hypotheses frgrncvvdeq.v1 V=VtxG
frgrncvvdeq.e E=EdgG
frgrncvvdeq.nx D=GNeighbVtxX
frgrncvvdeq.ny N=GNeighbVtxY
frgrncvvdeq.x φXV
frgrncvvdeq.y φYV
frgrncvvdeq.ne φXY
frgrncvvdeq.xy φYD
frgrncvvdeq.f φGFriendGraph
frgrncvvdeq.a A=xDιyN|xyE
Assertion frgrncvvdeqlem8 φA:D1-1N

Proof

Step Hyp Ref Expression
1 frgrncvvdeq.v1 V=VtxG
2 frgrncvvdeq.e E=EdgG
3 frgrncvvdeq.nx D=GNeighbVtxX
4 frgrncvvdeq.ny N=GNeighbVtxY
5 frgrncvvdeq.x φXV
6 frgrncvvdeq.y φYV
7 frgrncvvdeq.ne φXY
8 frgrncvvdeq.xy φYD
9 frgrncvvdeq.f φGFriendGraph
10 frgrncvvdeq.a A=xDιyN|xyE
11 1 2 3 4 5 6 7 8 9 10 frgrncvvdeqlem4 φA:DN
12 simpr φA:DNA:DN
13 ffvelcdm A:DNuDAuN
14 13 ad2ant2lr φA:DNuDwDAuN
15 14 adantr φA:DNuDwDAu=AwAuN
16 1 2 3 4 5 6 7 8 9 10 frgrncvvdeqlem1 φXN
17 preq1 x=uxy=uy
18 17 eleq1d x=uxyEuyE
19 18 riotabidv x=uιyN|xyE=ιyN|uyE
20 19 cbvmptv xDιyN|xyE=uDιyN|uyE
21 10 20 eqtri A=uDιyN|uyE
22 1 2 3 4 5 6 7 8 9 21 frgrncvvdeqlem6 φuDuAuE
23 preq1 x=wxy=wy
24 23 eleq1d x=wxyEwyE
25 24 riotabidv x=wιyN|xyE=ιyN|wyE
26 25 cbvmptv xDιyN|xyE=wDιyN|wyE
27 10 26 eqtri A=wDιyN|wyE
28 1 2 3 4 5 6 7 8 9 27 frgrncvvdeqlem6 φwDwAwE
29 22 28 anim12dan φuDwDuAuEwAwE
30 preq2 Aw=AuwAw=wAu
31 30 eleq1d Aw=AuwAwEwAuE
32 31 anbi2d Aw=AuuAuEwAwEuAuEwAuE
33 32 eqcoms Au=AwuAuEwAwEuAuEwAuE
34 33 biimpa Au=AwuAuEwAwEuAuEwAuE
35 df-ne uw¬u=w
36 2 3 frgrnbnb GFriendGraphuDwDuwuAuEwAuEAu=X
37 9 36 syl3an1 φuDwDuwuAuEwAuEAu=X
38 37 3expa φuDwDuwuAuEwAuEAu=X
39 df-nel XN¬XN
40 eleq1 Au=XAuNXN
41 40 biimpa Au=XAuNXN
42 41 pm2.24d Au=XAuN¬XNu=w
43 42 expcom AuNAu=X¬XNu=w
44 43 com13 ¬XNAu=XAuNu=w
45 39 44 sylbi XNAu=XAuNu=w
46 45 com12 Au=XXNAuNu=w
47 38 46 syl6 φuDwDuwuAuEwAuEXNAuNu=w
48 47 expcom uwφuDwDuAuEwAuEXNAuNu=w
49 48 com23 uwuAuEwAuEφuDwDXNAuNu=w
50 35 49 sylbir ¬u=wuAuEwAuEφuDwDXNAuNu=w
51 34 50 syl5com Au=AwuAuEwAwE¬u=wφuDwDXNAuNu=w
52 51 expcom uAuEwAwEAu=Aw¬u=wφuDwDXNAuNu=w
53 52 com24 uAuEwAwEφuDwD¬u=wAu=AwXNAuNu=w
54 29 53 mpcom φuDwD¬u=wAu=AwXNAuNu=w
55 54 ex φuDwD¬u=wAu=AwXNAuNu=w
56 55 com3r ¬u=wφuDwDAu=AwXNAuNu=w
57 56 com15 XNφuDwDAu=Aw¬u=wAuNu=w
58 16 57 mpcom φuDwDAu=Aw¬u=wAuNu=w
59 58 expd φuDwDAu=Aw¬u=wAuNu=w
60 59 adantr φA:DNuDwDAu=Aw¬u=wAuNu=w
61 60 imp42 φA:DNuDwDAu=Aw¬u=wAuNu=w
62 15 61 mpid φA:DNuDwDAu=Aw¬u=wu=w
63 62 pm2.18d φA:DNuDwDAu=Awu=w
64 63 ex φA:DNuDwDAu=Awu=w
65 64 ralrimivva φA:DNuDwDAu=Awu=w
66 dff13 A:D1-1NA:DNuDwDAu=Awu=w
67 12 65 66 sylanbrc φA:DNA:D1-1N
68 11 67 mpdan φA:D1-1N