| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgrncvvdeq.v |
|
| 2 |
|
frgrncvvdeq.d |
|
| 3 |
|
frgrwopreglem4a.e |
|
| 4 |
|
fveq2 |
|
| 5 |
4
|
a1i |
|
| 6 |
5
|
necon3d |
|
| 7 |
6
|
imp |
|
| 8 |
7
|
3adant1 |
|
| 9 |
1 2
|
frgrncvvdeq |
|
| 10 |
|
oveq2 |
|
| 11 |
|
neleq2 |
|
| 12 |
10 11
|
syl |
|
| 13 |
|
fveqeq2 |
|
| 14 |
12 13
|
imbi12d |
|
| 15 |
|
neleq1 |
|
| 16 |
|
fveq2 |
|
| 17 |
16
|
eqeq2d |
|
| 18 |
15 17
|
imbi12d |
|
| 19 |
|
simpll |
|
| 20 |
|
sneq |
|
| 21 |
20
|
difeq2d |
|
| 22 |
21
|
adantl |
|
| 23 |
|
simpr |
|
| 24 |
|
necom |
|
| 25 |
24
|
biimpi |
|
| 26 |
23 25
|
anim12i |
|
| 27 |
|
eldifsn |
|
| 28 |
26 27
|
sylibr |
|
| 29 |
14 18 19 22 28
|
rspc2vd |
|
| 30 |
|
nnel |
|
| 31 |
|
nbgrsym |
|
| 32 |
|
frgrusgr |
|
| 33 |
3
|
nbusgreledg |
|
| 34 |
32 33
|
syl |
|
| 35 |
34
|
biimpd |
|
| 36 |
31 35
|
biimtrid |
|
| 37 |
36
|
imp |
|
| 38 |
37
|
a1d |
|
| 39 |
38
|
expcom |
|
| 40 |
39
|
a1d |
|
| 41 |
30 40
|
sylbi |
|
| 42 |
|
eqneqall |
|
| 43 |
42
|
2a1d |
|
| 44 |
41 43
|
ja |
|
| 45 |
44
|
com12 |
|
| 46 |
29 45
|
syld |
|
| 47 |
46
|
com3l |
|
| 48 |
9 47
|
mpcom |
|
| 49 |
48
|
expd |
|
| 50 |
49
|
com34 |
|
| 51 |
50
|
3imp |
|
| 52 |
8 51
|
mpd |
|