| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumsplit.1 |
|
| 2 |
|
fsumsplit.2 |
|
| 3 |
|
fsumsplit.3 |
|
| 4 |
|
fsumsplit.4 |
|
| 5 |
|
ssun1 |
|
| 6 |
5 2
|
sseqtrrid |
|
| 7 |
6
|
sselda |
|
| 8 |
7 4
|
syldan |
|
| 9 |
8
|
ralrimiva |
|
| 10 |
3
|
olcd |
|
| 11 |
|
sumss2 |
|
| 12 |
6 9 10 11
|
syl21anc |
|
| 13 |
|
ssun2 |
|
| 14 |
13 2
|
sseqtrrid |
|
| 15 |
14
|
sselda |
|
| 16 |
15 4
|
syldan |
|
| 17 |
16
|
ralrimiva |
|
| 18 |
|
sumss2 |
|
| 19 |
14 17 10 18
|
syl21anc |
|
| 20 |
12 19
|
oveq12d |
|
| 21 |
|
0cn |
|
| 22 |
|
ifcl |
|
| 23 |
4 21 22
|
sylancl |
|
| 24 |
|
ifcl |
|
| 25 |
4 21 24
|
sylancl |
|
| 26 |
3 23 25
|
fsumadd |
|
| 27 |
2
|
eleq2d |
|
| 28 |
|
elun |
|
| 29 |
27 28
|
bitrdi |
|
| 30 |
29
|
biimpa |
|
| 31 |
|
iftrue |
|
| 32 |
31
|
adantl |
|
| 33 |
|
noel |
|
| 34 |
1
|
eleq2d |
|
| 35 |
|
elin |
|
| 36 |
34 35
|
bitr3di |
|
| 37 |
33 36
|
mtbii |
|
| 38 |
|
imnan |
|
| 39 |
37 38
|
sylibr |
|
| 40 |
39
|
imp |
|
| 41 |
40
|
iffalsed |
|
| 42 |
32 41
|
oveq12d |
|
| 43 |
8
|
addridd |
|
| 44 |
42 43
|
eqtrd |
|
| 45 |
39
|
con2d |
|
| 46 |
45
|
imp |
|
| 47 |
46
|
iffalsed |
|
| 48 |
|
iftrue |
|
| 49 |
48
|
adantl |
|
| 50 |
47 49
|
oveq12d |
|
| 51 |
16
|
addlidd |
|
| 52 |
50 51
|
eqtrd |
|
| 53 |
44 52
|
jaodan |
|
| 54 |
30 53
|
syldan |
|
| 55 |
54
|
sumeq2dv |
|
| 56 |
20 26 55
|
3eqtr2rd |
|