Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013) (Revised by Mario Carneiro, 22-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsumsplit.1 | |
|
fsumsplit.2 | |
||
fsumsplit.3 | |
||
fsumsplit.4 | |
||
Assertion | fsumsplit | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumsplit.1 | |
|
2 | fsumsplit.2 | |
|
3 | fsumsplit.3 | |
|
4 | fsumsplit.4 | |
|
5 | ssun1 | |
|
6 | 5 2 | sseqtrrid | |
7 | 6 | sselda | |
8 | 7 4 | syldan | |
9 | 8 | ralrimiva | |
10 | 3 | olcd | |
11 | sumss2 | |
|
12 | 6 9 10 11 | syl21anc | |
13 | ssun2 | |
|
14 | 13 2 | sseqtrrid | |
15 | 14 | sselda | |
16 | 15 4 | syldan | |
17 | 16 | ralrimiva | |
18 | sumss2 | |
|
19 | 14 17 10 18 | syl21anc | |
20 | 12 19 | oveq12d | |
21 | 0cn | |
|
22 | ifcl | |
|
23 | 4 21 22 | sylancl | |
24 | ifcl | |
|
25 | 4 21 24 | sylancl | |
26 | 3 23 25 | fsumadd | |
27 | 2 | eleq2d | |
28 | elun | |
|
29 | 27 28 | bitrdi | |
30 | 29 | biimpa | |
31 | iftrue | |
|
32 | 31 | adantl | |
33 | noel | |
|
34 | 1 | eleq2d | |
35 | elin | |
|
36 | 34 35 | bitr3di | |
37 | 33 36 | mtbii | |
38 | imnan | |
|
39 | 37 38 | sylibr | |
40 | 39 | imp | |
41 | 40 | iffalsed | |
42 | 32 41 | oveq12d | |
43 | 8 | addridd | |
44 | 42 43 | eqtrd | |
45 | 39 | con2d | |
46 | 45 | imp | |
47 | 46 | iffalsed | |
48 | iftrue | |
|
49 | 48 | adantl | |
50 | 47 49 | oveq12d | |
51 | 16 | addlidd | |
52 | 50 51 | eqtrd | |
53 | 44 52 | jaodan | |
54 | 30 53 | syldan | |
55 | 54 | sumeq2dv | |
56 | 20 26 55 | 3eqtr2rd | |