Metamath Proof Explorer


Theorem fsumsplit

Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013) (Revised by Mario Carneiro, 22-Apr-2014)

Ref Expression
Hypotheses fsumsplit.1 φAB=
fsumsplit.2 φU=AB
fsumsplit.3 φUFin
fsumsplit.4 φkUC
Assertion fsumsplit φkUC=kAC+kBC

Proof

Step Hyp Ref Expression
1 fsumsplit.1 φAB=
2 fsumsplit.2 φU=AB
3 fsumsplit.3 φUFin
4 fsumsplit.4 φkUC
5 ssun1 AAB
6 5 2 sseqtrrid φAU
7 6 sselda φkAkU
8 7 4 syldan φkAC
9 8 ralrimiva φkAC
10 3 olcd φU0UFin
11 sumss2 AUkACU0UFinkAC=kUifkAC0
12 6 9 10 11 syl21anc φkAC=kUifkAC0
13 ssun2 BAB
14 13 2 sseqtrrid φBU
15 14 sselda φkBkU
16 15 4 syldan φkBC
17 16 ralrimiva φkBC
18 sumss2 BUkBCU0UFinkBC=kUifkBC0
19 14 17 10 18 syl21anc φkBC=kUifkBC0
20 12 19 oveq12d φkAC+kBC=kUifkAC0+kUifkBC0
21 0cn 0
22 ifcl C0ifkAC0
23 4 21 22 sylancl φkUifkAC0
24 ifcl C0ifkBC0
25 4 21 24 sylancl φkUifkBC0
26 3 23 25 fsumadd φkUifkAC0+ifkBC0=kUifkAC0+kUifkBC0
27 2 eleq2d φkUkAB
28 elun kABkAkB
29 27 28 bitrdi φkUkAkB
30 29 biimpa φkUkAkB
31 iftrue kAifkAC0=C
32 31 adantl φkAifkAC0=C
33 noel ¬k
34 1 eleq2d φkABk
35 elin kABkAkB
36 34 35 bitr3di φkkAkB
37 33 36 mtbii φ¬kAkB
38 imnan kA¬kB¬kAkB
39 37 38 sylibr φkA¬kB
40 39 imp φkA¬kB
41 40 iffalsed φkAifkBC0=0
42 32 41 oveq12d φkAifkAC0+ifkBC0=C+0
43 8 addridd φkAC+0=C
44 42 43 eqtrd φkAifkAC0+ifkBC0=C
45 39 con2d φkB¬kA
46 45 imp φkB¬kA
47 46 iffalsed φkBifkAC0=0
48 iftrue kBifkBC0=C
49 48 adantl φkBifkBC0=C
50 47 49 oveq12d φkBifkAC0+ifkBC0=0+C
51 16 addlidd φkB0+C=C
52 50 51 eqtrd φkBifkAC0+ifkBC0=C
53 44 52 jaodan φkAkBifkAC0+ifkBC0=C
54 30 53 syldan φkUifkAC0+ifkBC0=C
55 54 sumeq2dv φkUifkAC0+ifkBC0=kUC
56 20 26 55 3eqtr2rd φkUC=kAC+kBC