Metamath Proof Explorer


Theorem fthsect

Description: A faithful functor reflects sections. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses fthsect.b B=BaseC
fthsect.h H=HomC
fthsect.f φFCFaithDG
fthsect.x φXB
fthsect.y φYB
fthsect.m φMXHY
fthsect.n φNYHX
fthsect.s S=SectC
fthsect.t T=SectD
Assertion fthsect φMXSYNXGYMFXTFYYGXN

Proof

Step Hyp Ref Expression
1 fthsect.b B=BaseC
2 fthsect.h H=HomC
3 fthsect.f φFCFaithDG
4 fthsect.x φXB
5 fthsect.y φYB
6 fthsect.m φMXHY
7 fthsect.n φNYHX
8 fthsect.s S=SectC
9 fthsect.t T=SectD
10 eqid HomD=HomD
11 eqid compC=compC
12 fthfunc CFaithDCFuncD
13 12 ssbri FCFaithDGFCFuncDG
14 3 13 syl φFCFuncDG
15 df-br FCFuncDGFGCFuncD
16 14 15 sylib φFGCFuncD
17 funcrcl FGCFuncDCCatDCat
18 16 17 syl φCCatDCat
19 18 simpld φCCat
20 1 2 11 19 4 5 4 6 7 catcocl φNXYcompCXMXHX
21 eqid IdC=IdC
22 1 2 21 19 4 catidcl φIdCXXHX
23 1 2 10 3 4 4 20 22 fthi φXGXNXYcompCXM=XGXIdCXNXYcompCXM=IdCX
24 eqid compD=compD
25 1 2 11 24 14 4 5 4 6 7 funcco φXGXNXYcompCXM=YGXNFXFYcompDFXXGYM
26 eqid IdD=IdD
27 1 21 26 14 4 funcid φXGXIdCX=IdDFX
28 25 27 eqeq12d φXGXNXYcompCXM=XGXIdCXYGXNFXFYcompDFXXGYM=IdDFX
29 23 28 bitr3d φNXYcompCXM=IdCXYGXNFXFYcompDFXXGYM=IdDFX
30 1 2 11 21 8 19 4 5 6 7 issect2 φMXSYNNXYcompCXM=IdCX
31 eqid BaseD=BaseD
32 18 simprd φDCat
33 1 31 14 funcf1 φF:BBaseD
34 33 4 ffvelcdmd φFXBaseD
35 33 5 ffvelcdmd φFYBaseD
36 1 2 10 14 4 5 funcf2 φXGY:XHYFXHomDFY
37 36 6 ffvelcdmd φXGYMFXHomDFY
38 1 2 10 14 5 4 funcf2 φYGX:YHXFYHomDFX
39 38 7 ffvelcdmd φYGXNFYHomDFX
40 31 10 24 26 9 32 34 35 37 39 issect2 φXGYMFXTFYYGXNYGXNFXFYcompDFXXGYM=IdDFX
41 29 30 40 3bitr4d φMXSYNXGYMFXTFYYGXN