Metamath Proof Explorer


Theorem fucocolem4

Description: Lemma for fucoco . The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 2-Oct-2025)

Ref Expression
Hypotheses fucoco.r φ R F D Nat E K
fucoco.s φ S G C Nat D L
fucoco.u φ U K D Nat E M
fucoco.v φ V L C Nat D N
fucoco.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fucoco.x φ X = F G
fucoco.y φ Y = K L
fucoco.z φ Z = M N
fucoco.a φ A = R S
fucoco.b φ B = U V
fucoco.q Q = C FuncCat E
fucoco.oq ˙ = comp Q
Assertion fucocolem4 φ Y P Z B O X O Y ˙ O Z X P Y A = x Base C U 1 st N x 1 st K 1 st L x 1 st K 1 st N x comp E 1 st M 1 st N x 1 st L x 2 nd K 1 st N x V x 1 st F 1 st G x 1 st K 1 st L x comp E 1 st M 1 st N x R 1 st L x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st L x 1 st G x 2 nd F 1 st L x S x

Proof

Step Hyp Ref Expression
1 fucoco.r φ R F D Nat E K
2 fucoco.s φ S G C Nat D L
3 fucoco.u φ U K D Nat E M
4 fucoco.v φ V L C Nat D N
5 fucoco.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
6 fucoco.x φ X = F G
7 fucoco.y φ Y = K L
8 fucoco.z φ Z = M N
9 fucoco.a φ A = R S
10 fucoco.b φ B = U V
11 fucoco.q Q = C FuncCat E
12 fucoco.oq ˙ = comp Q
13 eqid C Nat E = C Nat E
14 eqid Base C = Base C
15 eqid comp E = comp E
16 9 fveq2d φ X P Y A = X P Y R S
17 df-ov R X P Y S = X P Y R S
18 16 17 eqtr4di φ X P Y A = R X P Y S
19 5 2 1 6 7 fuco22nat φ R X P Y S O X C Nat E O Y
20 18 19 eqeltrd φ X P Y A O X C Nat E O Y
21 10 fveq2d φ Y P Z B = Y P Z U V
22 df-ov U Y P Z V = Y P Z U V
23 21 22 eqtr4di φ Y P Z B = U Y P Z V
24 5 4 3 7 8 fuco22nat φ U Y P Z V O Y C Nat E O Z
25 23 24 eqeltrd φ Y P Z B O Y C Nat E O Z
26 11 13 14 15 12 20 25 fucco φ Y P Z B O X O Y ˙ O Z X P Y A = x Base C Y P Z B x 1 st O X x 1 st O Y x comp E 1 st O Z x X P Y A x
27 eqid C Nat D = C Nat D
28 27 natrcl S G C Nat D L G C Func D L C Func D
29 2 28 syl φ G C Func D L C Func D
30 29 simpld φ G C Func D
31 30 func1st2nd φ 1 st G C Func D 2 nd G
32 eqid D Nat E = D Nat E
33 32 natrcl R F D Nat E K F D Func E K D Func E
34 1 33 syl φ F D Func E K D Func E
35 34 simpld φ F D Func E
36 35 func1st2nd φ 1 st F D Func E 2 nd F
37 relfunc Rel D Func E
38 1st2nd Rel D Func E F D Func E F = 1 st F 2 nd F
39 37 35 38 sylancr φ F = 1 st F 2 nd F
40 relfunc Rel C Func D
41 1st2nd Rel C Func D G C Func D G = 1 st G 2 nd G
42 40 30 41 sylancr φ G = 1 st G 2 nd G
43 39 42 opeq12d φ F G = 1 st F 2 nd F 1 st G 2 nd G
44 6 43 eqtrd φ X = 1 st F 2 nd F 1 st G 2 nd G
45 5 31 36 44 fuco111 φ 1 st O X = 1 st F 1 st G
46 45 fveq1d φ 1 st O X x = 1 st F 1 st G x
47 46 adantr φ x Base C 1 st O X x = 1 st F 1 st G x
48 eqid Base D = Base D
49 14 48 31 funcf1 φ 1 st G : Base C Base D
50 49 adantr φ x Base C 1 st G : Base C Base D
51 simpr φ x Base C x Base C
52 50 51 fvco3d φ x Base C 1 st F 1 st G x = 1 st F 1 st G x
53 47 52 eqtrd φ x Base C 1 st O X x = 1 st F 1 st G x
54 29 simprd φ L C Func D
55 54 func1st2nd φ 1 st L C Func D 2 nd L
56 34 simprd φ K D Func E
57 56 func1st2nd φ 1 st K D Func E 2 nd K
58 1st2nd Rel D Func E K D Func E K = 1 st K 2 nd K
59 37 56 58 sylancr φ K = 1 st K 2 nd K
60 1st2nd Rel C Func D L C Func D L = 1 st L 2 nd L
61 40 54 60 sylancr φ L = 1 st L 2 nd L
62 59 61 opeq12d φ K L = 1 st K 2 nd K 1 st L 2 nd L
63 7 62 eqtrd φ Y = 1 st K 2 nd K 1 st L 2 nd L
64 5 55 57 63 fuco111 φ 1 st O Y = 1 st K 1 st L
65 64 fveq1d φ 1 st O Y x = 1 st K 1 st L x
66 65 adantr φ x Base C 1 st O Y x = 1 st K 1 st L x
67 14 48 55 funcf1 φ 1 st L : Base C Base D
68 67 adantr φ x Base C 1 st L : Base C Base D
69 68 51 fvco3d φ x Base C 1 st K 1 st L x = 1 st K 1 st L x
70 66 69 eqtrd φ x Base C 1 st O Y x = 1 st K 1 st L x
71 53 70 opeq12d φ x Base C 1 st O X x 1 st O Y x = 1 st F 1 st G x 1 st K 1 st L x
72 27 natrcl V L C Nat D N L C Func D N C Func D
73 4 72 syl φ L C Func D N C Func D
74 73 simprd φ N C Func D
75 74 func1st2nd φ 1 st N C Func D 2 nd N
76 32 natrcl U K D Nat E M K D Func E M D Func E
77 3 76 syl φ K D Func E M D Func E
78 77 simprd φ M D Func E
79 78 func1st2nd φ 1 st M D Func E 2 nd M
80 1st2nd Rel D Func E M D Func E M = 1 st M 2 nd M
81 37 78 80 sylancr φ M = 1 st M 2 nd M
82 1st2nd Rel C Func D N C Func D N = 1 st N 2 nd N
83 40 74 82 sylancr φ N = 1 st N 2 nd N
84 81 83 opeq12d φ M N = 1 st M 2 nd M 1 st N 2 nd N
85 8 84 eqtrd φ Z = 1 st M 2 nd M 1 st N 2 nd N
86 5 75 79 85 fuco111 φ 1 st O Z = 1 st M 1 st N
87 86 fveq1d φ 1 st O Z x = 1 st M 1 st N x
88 87 adantr φ x Base C 1 st O Z x = 1 st M 1 st N x
89 14 48 75 funcf1 φ 1 st N : Base C Base D
90 89 adantr φ x Base C 1 st N : Base C Base D
91 90 51 fvco3d φ x Base C 1 st M 1 st N x = 1 st M 1 st N x
92 88 91 eqtrd φ x Base C 1 st O Z x = 1 st M 1 st N x
93 71 92 oveq12d φ x Base C 1 st O X x 1 st O Y x comp E 1 st O Z x = 1 st F 1 st G x 1 st K 1 st L x comp E 1 st M 1 st N x
94 5 7 8 4 3 fuco22a φ U Y P Z V = x Base C U 1 st N x 1 st K 1 st L x 1 st K 1 st N x comp E 1 st M 1 st N x 1 st L x 2 nd K 1 st N x V x
95 23 94 eqtrd φ Y P Z B = x Base C U 1 st N x 1 st K 1 st L x 1 st K 1 st N x comp E 1 st M 1 st N x 1 st L x 2 nd K 1 st N x V x
96 ovexd φ x Base C U 1 st N x 1 st K 1 st L x 1 st K 1 st N x comp E 1 st M 1 st N x 1 st L x 2 nd K 1 st N x V x V
97 95 96 fvmpt2d φ x Base C Y P Z B x = U 1 st N x 1 st K 1 st L x 1 st K 1 st N x comp E 1 st M 1 st N x 1 st L x 2 nd K 1 st N x V x
98 5 6 7 2 1 fuco22a φ R X P Y S = x Base C R 1 st L x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st L x 1 st G x 2 nd F 1 st L x S x
99 18 98 eqtrd φ X P Y A = x Base C R 1 st L x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st L x 1 st G x 2 nd F 1 st L x S x
100 ovexd φ x Base C R 1 st L x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st L x 1 st G x 2 nd F 1 st L x S x V
101 99 100 fvmpt2d φ x Base C X P Y A x = R 1 st L x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st L x 1 st G x 2 nd F 1 st L x S x
102 93 97 101 oveq123d φ x Base C Y P Z B x 1 st O X x 1 st O Y x comp E 1 st O Z x X P Y A x = U 1 st N x 1 st K 1 st L x 1 st K 1 st N x comp E 1 st M 1 st N x 1 st L x 2 nd K 1 st N x V x 1 st F 1 st G x 1 st K 1 st L x comp E 1 st M 1 st N x R 1 st L x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st L x 1 st G x 2 nd F 1 st L x S x
103 102 mpteq2dva φ x Base C Y P Z B x 1 st O X x 1 st O Y x comp E 1 st O Z x X P Y A x = x Base C U 1 st N x 1 st K 1 st L x 1 st K 1 st N x comp E 1 st M 1 st N x 1 st L x 2 nd K 1 st N x V x 1 st F 1 st G x 1 st K 1 st L x comp E 1 st M 1 st N x R 1 st L x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st L x 1 st G x 2 nd F 1 st L x S x
104 26 103 eqtrd φ Y P Z B O X O Y ˙ O Z X P Y A = x Base C U 1 st N x 1 st K 1 st L x 1 st K 1 st N x comp E 1 st M 1 st N x 1 st L x 2 nd K 1 st N x V x 1 st F 1 st G x 1 st K 1 st L x comp E 1 st M 1 st N x R 1 st L x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st L x 1 st G x 2 nd F 1 st L x S x