| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fullsubc.b |  | 
						
							| 2 |  | fullsubc.h |  | 
						
							| 3 |  | fullsubc.c |  | 
						
							| 4 |  | fullsubc.s |  | 
						
							| 5 |  | fullsubc.d |  | 
						
							| 6 |  | fullsubc.e |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 4 | adantr |  | 
						
							| 9 |  | simprl |  | 
						
							| 10 | 8 9 | sseldd |  | 
						
							| 11 |  | simprr |  | 
						
							| 12 | 8 11 | sseldd |  | 
						
							| 13 | 2 1 7 10 12 | homfval |  | 
						
							| 14 | 9 11 | ovresd |  | 
						
							| 15 | 2 1 | homffn |  | 
						
							| 16 |  | xpss12 |  | 
						
							| 17 | 4 4 16 | syl2anc |  | 
						
							| 18 |  | fnssres |  | 
						
							| 19 | 15 17 18 | sylancr |  | 
						
							| 20 | 6 1 3 19 4 | reschom |  | 
						
							| 21 | 20 | oveqdr |  | 
						
							| 22 | 14 21 | eqtr3d |  | 
						
							| 23 | 5 1 | ressbas2 |  | 
						
							| 24 | 4 23 | syl |  | 
						
							| 25 |  | fvex |  | 
						
							| 26 | 24 25 | eqeltrdi |  | 
						
							| 27 | 5 7 | resshom |  | 
						
							| 28 | 26 27 | syl |  | 
						
							| 29 | 28 | oveqdr |  | 
						
							| 30 | 13 22 29 | 3eqtr3rd |  | 
						
							| 31 | 30 | ralrimivva |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 | 6 1 3 19 4 | rescbas |  | 
						
							| 35 | 32 33 24 34 | homfeq |  | 
						
							| 36 | 31 35 | mpbird |  | 
						
							| 37 |  | eqid |  | 
						
							| 38 | 5 37 | ressco |  | 
						
							| 39 | 26 38 | syl |  | 
						
							| 40 | 6 1 3 19 4 37 | rescco |  | 
						
							| 41 | 39 40 | eqtr3d |  | 
						
							| 42 | 41 36 | comfeqd |  | 
						
							| 43 | 36 42 | jca |  |