Metamath Proof Explorer


Theorem funopsn

Description: If a function is an ordered pair then it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020) (Proof shortened by AV, 15-Jul-2021) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng , as relsnopg is to relop . (New usage is discouraged.)

Ref Expression
Hypotheses funopsn.x X V
funopsn.y Y V
Assertion funopsn Fun F F = X Y a X = a F = a a

Proof

Step Hyp Ref Expression
1 funopsn.x X V
2 funopsn.y Y V
3 funiun Fun F F = x dom F x F x
4 eqeq1 F = X Y F = x dom F x F x X Y = x dom F x F x
5 eqcom X Y = x dom F x F x x dom F x F x = X Y
6 4 5 bitrdi F = X Y F = x dom F x F x x dom F x F x = X Y
7 6 adantl Fun F F = X Y F = x dom F x F x x dom F x F x = X Y
8 1 2 opnzi X Y
9 neeq1 X Y = F X Y F
10 9 eqcoms F = X Y X Y F
11 funrel Fun F Rel F
12 reldm0 Rel F F = dom F =
13 11 12 syl Fun F F = dom F =
14 13 biimprd Fun F dom F = F =
15 14 necon3d Fun F F dom F
16 15 com12 F Fun F dom F
17 10 16 syl6bi F = X Y X Y Fun F dom F
18 17 com3l X Y Fun F F = X Y dom F
19 18 impd X Y Fun F F = X Y dom F
20 8 19 ax-mp Fun F F = X Y dom F
21 fvex F x V
22 21 1 2 iunopeqop dom F x dom F x F x = X Y a dom F = a
23 20 22 syl Fun F F = X Y x dom F x F x = X Y a dom F = a
24 7 23 sylbid Fun F F = X Y F = x dom F x F x a dom F = a
25 24 imp Fun F F = X Y F = x dom F x F x a dom F = a
26 iuneq1 dom F = a x dom F x F x = x a x F x
27 vex a V
28 id x = a x = a
29 fveq2 x = a F x = F a
30 28 29 opeq12d x = a x F x = a F a
31 30 sneqd x = a x F x = a F a
32 27 31 iunxsn x a x F x = a F a
33 26 32 eqtrdi dom F = a x dom F x F x = a F a
34 33 adantl Fun F F = X Y dom F = a x dom F x F x = a F a
35 34 eqeq2d Fun F F = X Y dom F = a F = x dom F x F x F = a F a
36 eqeq1 F = X Y F = a F a X Y = a F a
37 36 adantl Fun F F = X Y F = a F a X Y = a F a
38 eqcom X Y = a F a a F a = X Y
39 fvex F a V
40 27 39 snopeqop a F a = X Y a = F a X = Y X = a
41 38 40 sylbb X Y = a F a a = F a X = Y X = a
42 37 41 syl6bi Fun F F = X Y F = a F a a = F a X = Y X = a
43 42 imp Fun F F = X Y F = a F a a = F a X = Y X = a
44 simpr3 F = a F a a = F a X = Y X = a X = a
45 simp1 a = F a X = Y X = a a = F a
46 45 eqcomd a = F a X = Y X = a F a = a
47 46 opeq2d a = F a X = Y X = a a F a = a a
48 47 sneqd a = F a X = Y X = a a F a = a a
49 48 eqeq2d a = F a X = Y X = a F = a F a F = a a
50 49 biimpac F = a F a a = F a X = Y X = a F = a a
51 44 50 jca F = a F a a = F a X = Y X = a X = a F = a a
52 51 ex F = a F a a = F a X = Y X = a X = a F = a a
53 52 adantl Fun F F = X Y F = a F a a = F a X = Y X = a X = a F = a a
54 53 a1dd Fun F F = X Y F = a F a a = F a X = Y X = a dom F = a X = a F = a a
55 43 54 mpd Fun F F = X Y F = a F a dom F = a X = a F = a a
56 55 impancom Fun F F = X Y dom F = a F = a F a X = a F = a a
57 35 56 sylbid Fun F F = X Y dom F = a F = x dom F x F x X = a F = a a
58 57 impancom Fun F F = X Y F = x dom F x F x dom F = a X = a F = a a
59 58 eximdv Fun F F = X Y F = x dom F x F x a dom F = a a X = a F = a a
60 25 59 mpd Fun F F = X Y F = x dom F x F x a X = a F = a a
61 3 60 mpidan Fun F F = X Y a X = a F = a a