| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funopsn.x |
|
| 2 |
|
funopsn.y |
|
| 3 |
|
funiun |
|
| 4 |
|
eqeq1 |
|
| 5 |
|
eqcom |
|
| 6 |
4 5
|
bitrdi |
|
| 7 |
6
|
adantl |
|
| 8 |
1 2
|
opnzi |
|
| 9 |
|
neeq1 |
|
| 10 |
9
|
eqcoms |
|
| 11 |
|
funrel |
|
| 12 |
|
reldm0 |
|
| 13 |
11 12
|
syl |
|
| 14 |
13
|
biimprd |
|
| 15 |
14
|
necon3d |
|
| 16 |
15
|
com12 |
|
| 17 |
10 16
|
biimtrdi |
|
| 18 |
17
|
com3l |
|
| 19 |
18
|
impd |
|
| 20 |
8 19
|
ax-mp |
|
| 21 |
|
fvex |
|
| 22 |
21 1 2
|
iunopeqop |
|
| 23 |
20 22
|
syl |
|
| 24 |
7 23
|
sylbid |
|
| 25 |
24
|
imp |
|
| 26 |
|
iuneq1 |
|
| 27 |
|
vex |
|
| 28 |
|
id |
|
| 29 |
|
fveq2 |
|
| 30 |
28 29
|
opeq12d |
|
| 31 |
30
|
sneqd |
|
| 32 |
27 31
|
iunxsn |
|
| 33 |
26 32
|
eqtrdi |
|
| 34 |
33
|
adantl |
|
| 35 |
34
|
eqeq2d |
|
| 36 |
|
eqeq1 |
|
| 37 |
36
|
adantl |
|
| 38 |
|
eqcom |
|
| 39 |
|
fvex |
|
| 40 |
27 39
|
snopeqop |
|
| 41 |
38 40
|
sylbb |
|
| 42 |
37 41
|
biimtrdi |
|
| 43 |
42
|
imp |
|
| 44 |
|
simpr3 |
|
| 45 |
|
simp1 |
|
| 46 |
45
|
eqcomd |
|
| 47 |
46
|
opeq2d |
|
| 48 |
47
|
sneqd |
|
| 49 |
48
|
eqeq2d |
|
| 50 |
49
|
biimpac |
|
| 51 |
44 50
|
jca |
|
| 52 |
51
|
ex |
|
| 53 |
52
|
adantl |
|
| 54 |
53
|
a1dd |
|
| 55 |
43 54
|
mpd |
|
| 56 |
55
|
impancom |
|
| 57 |
35 56
|
sylbid |
|
| 58 |
57
|
impancom |
|
| 59 |
58
|
eximdv |
|
| 60 |
25 59
|
mpd |
|
| 61 |
3 60
|
mpidan |
|