Description: If a function is an ordered pair then it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020) (Proof shortened by AV, 15-Jul-2021) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng , as relsnopg is to relop . (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | funopsn.x | |
|
funopsn.y | |
||
Assertion | funopsn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funopsn.x | |
|
2 | funopsn.y | |
|
3 | funiun | |
|
4 | eqeq1 | |
|
5 | eqcom | |
|
6 | 4 5 | bitrdi | |
7 | 6 | adantl | |
8 | 1 2 | opnzi | |
9 | neeq1 | |
|
10 | 9 | eqcoms | |
11 | funrel | |
|
12 | reldm0 | |
|
13 | 11 12 | syl | |
14 | 13 | biimprd | |
15 | 14 | necon3d | |
16 | 15 | com12 | |
17 | 10 16 | syl6bi | |
18 | 17 | com3l | |
19 | 18 | impd | |
20 | 8 19 | ax-mp | |
21 | fvex | |
|
22 | 21 1 2 | iunopeqop | |
23 | 20 22 | syl | |
24 | 7 23 | sylbid | |
25 | 24 | imp | |
26 | iuneq1 | |
|
27 | vex | |
|
28 | id | |
|
29 | fveq2 | |
|
30 | 28 29 | opeq12d | |
31 | 30 | sneqd | |
32 | 27 31 | iunxsn | |
33 | 26 32 | eqtrdi | |
34 | 33 | adantl | |
35 | 34 | eqeq2d | |
36 | eqeq1 | |
|
37 | 36 | adantl | |
38 | eqcom | |
|
39 | fvex | |
|
40 | 27 39 | snopeqop | |
41 | 38 40 | sylbb | |
42 | 37 41 | syl6bi | |
43 | 42 | imp | |
44 | simpr3 | |
|
45 | simp1 | |
|
46 | 45 | eqcomd | |
47 | 46 | opeq2d | |
48 | 47 | sneqd | |
49 | 48 | eqeq2d | |
50 | 49 | biimpac | |
51 | 44 50 | jca | |
52 | 51 | ex | |
53 | 52 | adantl | |
54 | 53 | a1dd | |
55 | 43 54 | mpd | |
56 | 55 | impancom | |
57 | 35 56 | sylbid | |
58 | 57 | impancom | |
59 | 58 | eximdv | |
60 | 25 59 | mpd | |
61 | 3 60 | mpidan | |