Metamath Proof Explorer


Theorem funopsn

Description: If a function is an ordered pair then it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020) (Proof shortened by AV, 15-Jul-2021) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng , as relsnopg is to relop . (New usage is discouraged.)

Ref Expression
Hypotheses funopsn.x XV
funopsn.y YV
Assertion funopsn FunFF=XYaX=aF=aa

Proof

Step Hyp Ref Expression
1 funopsn.x XV
2 funopsn.y YV
3 funiun FunFF=xdomFxFx
4 eqeq1 F=XYF=xdomFxFxXY=xdomFxFx
5 eqcom XY=xdomFxFxxdomFxFx=XY
6 4 5 bitrdi F=XYF=xdomFxFxxdomFxFx=XY
7 6 adantl FunFF=XYF=xdomFxFxxdomFxFx=XY
8 1 2 opnzi XY
9 neeq1 XY=FXYF
10 9 eqcoms F=XYXYF
11 funrel FunFRelF
12 reldm0 RelFF=domF=
13 11 12 syl FunFF=domF=
14 13 biimprd FunFdomF=F=
15 14 necon3d FunFFdomF
16 15 com12 FFunFdomF
17 10 16 syl6bi F=XYXYFunFdomF
18 17 com3l XYFunFF=XYdomF
19 18 impd XYFunFF=XYdomF
20 8 19 ax-mp FunFF=XYdomF
21 fvex FxV
22 21 1 2 iunopeqop domFxdomFxFx=XYadomF=a
23 20 22 syl FunFF=XYxdomFxFx=XYadomF=a
24 7 23 sylbid FunFF=XYF=xdomFxFxadomF=a
25 24 imp FunFF=XYF=xdomFxFxadomF=a
26 iuneq1 domF=axdomFxFx=xaxFx
27 vex aV
28 id x=ax=a
29 fveq2 x=aFx=Fa
30 28 29 opeq12d x=axFx=aFa
31 30 sneqd x=axFx=aFa
32 27 31 iunxsn xaxFx=aFa
33 26 32 eqtrdi domF=axdomFxFx=aFa
34 33 adantl FunFF=XYdomF=axdomFxFx=aFa
35 34 eqeq2d FunFF=XYdomF=aF=xdomFxFxF=aFa
36 eqeq1 F=XYF=aFaXY=aFa
37 36 adantl FunFF=XYF=aFaXY=aFa
38 eqcom XY=aFaaFa=XY
39 fvex FaV
40 27 39 snopeqop aFa=XYa=FaX=YX=a
41 38 40 sylbb XY=aFaa=FaX=YX=a
42 37 41 syl6bi FunFF=XYF=aFaa=FaX=YX=a
43 42 imp FunFF=XYF=aFaa=FaX=YX=a
44 simpr3 F=aFaa=FaX=YX=aX=a
45 simp1 a=FaX=YX=aa=Fa
46 45 eqcomd a=FaX=YX=aFa=a
47 46 opeq2d a=FaX=YX=aaFa=aa
48 47 sneqd a=FaX=YX=aaFa=aa
49 48 eqeq2d a=FaX=YX=aF=aFaF=aa
50 49 biimpac F=aFaa=FaX=YX=aF=aa
51 44 50 jca F=aFaa=FaX=YX=aX=aF=aa
52 51 ex F=aFaa=FaX=YX=aX=aF=aa
53 52 adantl FunFF=XYF=aFaa=FaX=YX=aX=aF=aa
54 53 a1dd FunFF=XYF=aFaa=FaX=YX=adomF=aX=aF=aa
55 43 54 mpd FunFF=XYF=aFadomF=aX=aF=aa
56 55 impancom FunFF=XYdomF=aF=aFaX=aF=aa
57 35 56 sylbid FunFF=XYdomF=aF=xdomFxFxX=aF=aa
58 57 impancom FunFF=XYF=xdomFxFxdomF=aX=aF=aa
59 58 eximdv FunFF=XYF=xdomFxFxadomF=aaX=aF=aa
60 25 59 mpd FunFF=XYF=xdomFxFxaX=aF=aa
61 3 60 mpidan FunFF=XYaX=aF=aa