Metamath Proof Explorer


Theorem funressnfv

Description: A restriction to a singleton with a function value is a function under certain conditions. (Contributed by Alexander van der Vekens, 25-Jul-2017) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Assertion funressnfv XdomFGFunFGXGFnAXAFunFGX

Proof

Step Hyp Ref Expression
1 relres RelFGX
2 1 a1i XdomFGFunFGXGFnAXARelFGX
3 dmfco FunGXdomGXdomFGGXdomF
4 3 biimpd FunGXdomGXdomFGGXdomF
5 4 funfni GFnAXAXdomFGGXdomF
6 dmressnsn GXdomFdomFGX=GX
7 eleq2 domFGX=GXxdomFGXxGX
8 velsn xGXx=GX
9 dmressnsn XdomFGdomFGX=X
10 dffun7 FunFGXRelFGXxdomFGX*yxFGXy
11 snidg XdomFGXX
12 11 adantl domFGX=XXdomFGXX
13 eleq2 X=domFGXXXXdomFGX
14 13 eqcoms domFGX=XXXXdomFGX
15 14 adantr domFGX=XXdomFGXXXdomFGX
16 12 15 mpbid domFGX=XXdomFGXdomFGX
17 fvex GXV
18 17 isseti zz=GX
19 eqcom z=GXGX=z
20 fnbrfvb GFnAXAGX=zXGz
21 19 20 bitrid GFnAXAz=GXXGz
22 21 biimpd GFnAXAz=GXXGz
23 breq1 GX=zGXFyzFy
24 23 eqcoms z=GXGXFyzFy
25 24 biimpcd GXFyz=GXzFy
26 22 25 anim12ii GFnAXAGXFyz=GXXGzzFy
27 26 eximdv GFnAXAGXFyzz=GXzXGzzFy
28 18 27 mpi GFnAXAGXFyzXGzzFy
29 simpr GFnAXAXA
30 vex yV
31 brcog XAyVXFGyzXGzzFy
32 29 30 31 sylancl GFnAXAXFGyzXGzzFy
33 32 adantr GFnAXAGXFyXFGyzXGzzFy
34 28 33 mpbird GFnAXAGXFyXFGy
35 30 brresi XFGXyXXXFGy
36 snidg XAXX
37 36 biantrurd XAXFGyXXXFGy
38 35 37 bitr4id XAXFGXyXFGy
39 38 ad2antlr GFnAXAGXFyXFGXyXFGy
40 34 39 mpbird GFnAXAGXFyXFGXy
41 40 ex GFnAXAGXFyXFGXy
42 41 adantl domFGX=XXdomFGx=XGFnAXAGXFyXFGXy
43 breq1 X=xXFGXyxFGXy
44 43 eqcoms x=XXFGXyxFGXy
45 44 ad2antlr domFGX=XXdomFGx=XGFnAXAXFGXyxFGXy
46 42 45 sylibd domFGX=XXdomFGx=XGFnAXAGXFyxFGXy
47 46 moimdv domFGX=XXdomFGx=XGFnAXA*yxFGXy*yGXFy
48 47 ex domFGX=XXdomFGx=XGFnAXA*yxFGXy*yGXFy
49 48 com23 domFGX=XXdomFGx=X*yxFGXyGFnAXA*yGXFy
50 16 49 rspcimdv domFGX=XXdomFGxdomFGX*yxFGXyGFnAXA*yGXFy
51 50 ex domFGX=XXdomFGxdomFGX*yxFGXyGFnAXA*yGXFy
52 51 com13 xdomFGX*yxFGXyXdomFGdomFGX=XGFnAXA*yGXFy
53 10 52 simplbiim FunFGXXdomFGdomFGX=XGFnAXA*yGXFy
54 53 com13 domFGX=XXdomFGFunFGXGFnAXA*yGXFy
55 9 54 mpcom XdomFGFunFGXGFnAXA*yGXFy
56 55 imp31 XdomFGFunFGXGFnAXA*yGXFy
57 17 snid GXGX
58 57 biantrur GXFyGXGXGXFy
59 58 a1i XdomFGFunFGXGFnAXAGXFyGXGXGXFy
60 59 mobidv XdomFGFunFGXGFnAXA*yGXFy*yGXGXGXFy
61 56 60 mpbid XdomFGFunFGXGFnAXA*yGXGXGXFy
62 61 adantl x=GXXdomFGFunFGXGFnAXA*yGXGXGXFy
63 breq1 x=GXxFGXyGXFGXy
64 30 brresi GXFGXyGXGXGXFy
65 63 64 bitr2di x=GXGXGXGXFyxFGXy
66 65 adantr x=GXXdomFGFunFGXGFnAXAGXGXGXFyxFGXy
67 66 mobidv x=GXXdomFGFunFGXGFnAXA*yGXGXGXFy*yxFGXy
68 62 67 mpbid x=GXXdomFGFunFGXGFnAXA*yxFGXy
69 68 ex x=GXXdomFGFunFGXGFnAXA*yxFGXy
70 8 69 sylbi xGXXdomFGFunFGXGFnAXA*yxFGXy
71 7 70 syl6bi domFGX=GXxdomFGXXdomFGFunFGXGFnAXA*yxFGXy
72 71 com23 domFGX=GXXdomFGFunFGXGFnAXAxdomFGX*yxFGXy
73 6 72 syl GXdomFXdomFGFunFGXGFnAXAxdomFGX*yxFGXy
74 5 73 syl6com XdomFGGFnAXAXdomFGFunFGXGFnAXAxdomFGX*yxFGXy
75 74 a1d XdomFGFunFGXGFnAXAXdomFGFunFGXGFnAXAxdomFGX*yxFGXy
76 75 imp31 XdomFGFunFGXGFnAXAXdomFGFunFGXGFnAXAxdomFGX*yxFGXy
77 76 pm2.43i XdomFGFunFGXGFnAXAxdomFGX*yxFGXy
78 77 ralrimiv XdomFGFunFGXGFnAXAxdomFGX*yxFGXy
79 dffun7 FunFGXRelFGXxdomFGX*yxFGXy
80 2 78 79 sylanbrc XdomFGFunFGXGFnAXAFunFGX