Metamath Proof Explorer


Theorem fvcosymgeq

Description: The values of two compositions of permutations are equal if the values of the composed permutations are pairwise equal. (Contributed by AV, 26-Jan-2019)

Ref Expression
Hypotheses gsmsymgrfix.s S=SymGrpN
gsmsymgrfix.b B=BaseS
gsmsymgreq.z Z=SymGrpM
gsmsymgreq.p P=BaseZ
gsmsymgreq.i I=NM
Assertion fvcosymgeq GBKPXIGX=KXnIFn=HnFGX=HKX

Proof

Step Hyp Ref Expression
1 gsmsymgrfix.s S=SymGrpN
2 gsmsymgrfix.b B=BaseS
3 gsmsymgreq.z Z=SymGrpM
4 gsmsymgreq.p P=BaseZ
5 gsmsymgreq.i I=NM
6 1 2 symgbasf GBG:NN
7 6 ffnd GBGFnN
8 3 4 symgbasf KPK:MM
9 8 ffnd KPKFnM
10 7 9 anim12i GBKPGFnNKFnM
11 10 adantr GBKPXIGX=KXnIFn=HnGFnNKFnM
12 5 eleq2i XIXNM
13 12 biimpi XIXNM
14 13 3ad2ant1 XIGX=KXnIFn=HnXNM
15 14 adantl GBKPXIGX=KXnIFn=HnXNM
16 simpr2 GBKPXIGX=KXnIFn=HnGX=KX
17 1 2 symgbasf1o GBG:N1-1 ontoN
18 dff1o5 G:N1-1 ontoNG:N1-1NranG=N
19 eqcom ranG=NN=ranG
20 19 biimpi ranG=NN=ranG
21 18 20 simplbiim G:N1-1 ontoNN=ranG
22 17 21 syl GBN=ranG
23 3 4 symgbasf1o KPK:M1-1 ontoM
24 dff1o5 K:M1-1 ontoMK:M1-1MranK=M
25 eqcom ranK=MM=ranK
26 25 biimpi ranK=MM=ranK
27 24 26 simplbiim K:M1-1 ontoMM=ranK
28 23 27 syl KPM=ranK
29 22 28 ineqan12d GBKPNM=ranGranK
30 5 29 eqtrid GBKPI=ranGranK
31 30 raleqdv GBKPnIFn=HnnranGranKFn=Hn
32 31 biimpcd nIFn=HnGBKPnranGranKFn=Hn
33 32 3ad2ant3 XIGX=KXnIFn=HnGBKPnranGranKFn=Hn
34 33 impcom GBKPXIGX=KXnIFn=HnnranGranKFn=Hn
35 15 16 34 3jca GBKPXIGX=KXnIFn=HnXNMGX=KXnranGranKFn=Hn
36 fvcofneq GFnNKFnMXNMGX=KXnranGranKFn=HnFGX=HKX
37 11 35 36 sylc GBKPXIGX=KXnIFn=HnFGX=HKX
38 37 ex GBKPXIGX=KXnIFn=HnFGX=HKX