| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsmsymgrfix.s |
|
| 2 |
|
gsmsymgrfix.b |
|
| 3 |
|
gsmsymgreq.z |
|
| 4 |
|
gsmsymgreq.p |
|
| 5 |
|
gsmsymgreq.i |
|
| 6 |
1 2
|
symgbasf |
|
| 7 |
6
|
ffnd |
|
| 8 |
3 4
|
symgbasf |
|
| 9 |
8
|
ffnd |
|
| 10 |
7 9
|
anim12i |
|
| 11 |
10
|
adantr |
|
| 12 |
5
|
eleq2i |
|
| 13 |
12
|
biimpi |
|
| 14 |
13
|
3ad2ant1 |
|
| 15 |
14
|
adantl |
|
| 16 |
|
simpr2 |
|
| 17 |
1 2
|
symgbasf1o |
|
| 18 |
|
dff1o5 |
|
| 19 |
|
eqcom |
|
| 20 |
19
|
biimpi |
|
| 21 |
18 20
|
simplbiim |
|
| 22 |
17 21
|
syl |
|
| 23 |
3 4
|
symgbasf1o |
|
| 24 |
|
dff1o5 |
|
| 25 |
|
eqcom |
|
| 26 |
25
|
biimpi |
|
| 27 |
24 26
|
simplbiim |
|
| 28 |
23 27
|
syl |
|
| 29 |
22 28
|
ineqan12d |
|
| 30 |
5 29
|
eqtrid |
|
| 31 |
30
|
raleqdv |
|
| 32 |
31
|
biimpcd |
|
| 33 |
32
|
3ad2ant3 |
|
| 34 |
33
|
impcom |
|
| 35 |
15 16 34
|
3jca |
|
| 36 |
|
fvcofneq |
|
| 37 |
11 35 36
|
sylc |
|
| 38 |
37
|
ex |
|