Metamath Proof Explorer


Theorem fvelimad

Description: Function value in an image. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fvelimad.x _xF
fvelimad.f φFFnA
fvelimad.c φCFB
Assertion fvelimad φxABFx=C

Proof

Step Hyp Ref Expression
1 fvelimad.x _xF
2 fvelimad.f φFFnA
3 fvelimad.c φCFB
4 elimag CFBCFByByFC
5 4 ibi CFByByFC
6 3 5 syl φyByFC
7 nfv yφ
8 nfre1 yyABFy=C
9 vex yV
10 9 a1i φyFCyV
11 3 adantr φyFCCFB
12 simpr φyFCyFC
13 10 11 12 breldmd φyFCydomF
14 2 fndmd φdomF=A
15 14 adantr φyFCdomF=A
16 13 15 eleqtrd φyFCyA
17 16 3adant2 φyByFCyA
18 simp2 φyByFCyB
19 17 18 elind φyByFCyAB
20 fnfun FFnAFunF
21 2 20 syl φFunF
22 21 3ad2ant1 φyByFCFunF
23 simp3 φyByFCyFC
24 funbrfv FunFyFCFy=C
25 22 23 24 sylc φyByFCFy=C
26 rspe yABFy=CyABFy=C
27 19 25 26 syl2anc φyByFCyABFy=C
28 27 3exp φyByFCyABFy=C
29 7 8 28 rexlimd φyByFCyABFy=C
30 6 29 mpd φyABFy=C
31 nfv yFx=C
32 nfcv _xy
33 1 32 nffv _xFy
34 33 nfeq1 xFy=C
35 fveqeq2 x=yFx=CFy=C
36 31 34 35 cbvrexw xABFx=CyABFy=C
37 30 36 sylibr φxABFx=C