| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fwddifn0.1 |
|
| 2 |
|
fwddifn0.2 |
|
| 3 |
|
fwddifn0.3 |
|
| 4 |
|
0nn0 |
|
| 5 |
4
|
a1i |
|
| 6 |
1 3
|
sseldd |
|
| 7 |
|
0z |
|
| 8 |
|
fzsn |
|
| 9 |
7 8
|
ax-mp |
|
| 10 |
9
|
eleq2i |
|
| 11 |
|
velsn |
|
| 12 |
10 11
|
bitri |
|
| 13 |
|
oveq2 |
|
| 14 |
13
|
adantl |
|
| 15 |
6
|
addridd |
|
| 16 |
15 3
|
eqeltrd |
|
| 17 |
16
|
adantr |
|
| 18 |
14 17
|
eqeltrd |
|
| 19 |
12 18
|
sylan2b |
|
| 20 |
5 1 2 6 19
|
fwddifnval |
|
| 21 |
15
|
fveq2d |
|
| 22 |
21
|
oveq2d |
|
| 23 |
2 3
|
ffvelcdmd |
|
| 24 |
23
|
mullidd |
|
| 25 |
22 24
|
eqtrd |
|
| 26 |
25
|
oveq2d |
|
| 27 |
26 24
|
eqtrd |
|
| 28 |
27 23
|
eqeltrd |
|
| 29 |
|
oveq2 |
|
| 30 |
|
bcnn |
|
| 31 |
4 30
|
ax-mp |
|
| 32 |
29 31
|
eqtrdi |
|
| 33 |
|
oveq2 |
|
| 34 |
|
0m0e0 |
|
| 35 |
33 34
|
eqtrdi |
|
| 36 |
35
|
oveq2d |
|
| 37 |
|
neg1cn |
|
| 38 |
|
exp0 |
|
| 39 |
37 38
|
ax-mp |
|
| 40 |
36 39
|
eqtrdi |
|
| 41 |
13
|
fveq2d |
|
| 42 |
40 41
|
oveq12d |
|
| 43 |
32 42
|
oveq12d |
|
| 44 |
43
|
fsum1 |
|
| 45 |
7 28 44
|
sylancr |
|
| 46 |
45 27
|
eqtrd |
|
| 47 |
20 46
|
eqtrd |
|