Metamath Proof Explorer


Theorem fz0fzelfz0

Description: If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018)

Ref Expression
Assertion fz0fzelfz0 N0RMNRM0R

Proof

Step Hyp Ref Expression
1 elfz2nn0 N0RN0R0NR
2 elfz2 MNRNRMNMMR
3 simplr N0MNMM
4 0red N0M0
5 nn0re N0N
6 5 adantr N0MN
7 zre MM
8 7 adantl N0MM
9 4 6 8 3jca N0M0NM
10 9 adantr N0MNM0NM
11 nn0ge0 N00N
12 11 adantr N0M0N
13 12 anim1i N0MNM0NNM
14 letr 0NM0NNM0M
15 10 13 14 sylc N0MNM0M
16 elnn0z M0M0M
17 3 15 16 sylanbrc N0MNMM0
18 17 exp31 N0MNMM0
19 18 com23 N0NMMM0
20 19 3ad2ant1 N0R0NRNMMM0
21 20 com13 MNMN0R0NRM0
22 21 adantrd MNMMRN0R0NRM0
23 22 3ad2ant3 NRMNMMRN0R0NRM0
24 23 imp NRMNMMRN0R0NRM0
25 24 imp NRMNMMRN0R0NRM0
26 simpr2 NRMNMMRN0R0NRR0
27 simplrr NRMNMMRN0R0NRMR
28 25 26 27 3jca NRMNMMRN0R0NRM0R0MR
29 28 ex NRMNMMRN0R0NRM0R0MR
30 2 29 sylbi MNRN0R0NRM0R0MR
31 30 com12 N0R0NRMNRM0R0MR
32 1 31 sylbi N0RMNRM0R0MR
33 32 imp N0RMNRM0R0MR
34 elfz2nn0 M0RM0R0MR
35 33 34 sylibr N0RMNRM0R