Metamath Proof Explorer


Theorem gacan

Description: Group inverses cancel in a group action. (Contributed by Jeff Hankins, 11-Aug-2009) (Revised by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses galcan.1 X=BaseG
gacan.2 N=invgG
Assertion gacan ˙GGrpActYAXBYCYA˙B=CNA˙C=B

Proof

Step Hyp Ref Expression
1 galcan.1 X=BaseG
2 gacan.2 N=invgG
3 gagrp ˙GGrpActYGGrp
4 3 adantr ˙GGrpActYAXBYCYGGrp
5 simpr1 ˙GGrpActYAXBYCYAX
6 eqid +G=+G
7 eqid 0G=0G
8 1 6 7 2 grprinv GGrpAXA+GNA=0G
9 4 5 8 syl2anc ˙GGrpActYAXBYCYA+GNA=0G
10 9 oveq1d ˙GGrpActYAXBYCYA+GNA˙C=0G˙C
11 simpl ˙GGrpActYAXBYCY˙GGrpActY
12 1 2 grpinvcl GGrpAXNAX
13 4 5 12 syl2anc ˙GGrpActYAXBYCYNAX
14 simpr3 ˙GGrpActYAXBYCYCY
15 1 6 gaass ˙GGrpActYAXNAXCYA+GNA˙C=A˙NA˙C
16 11 5 13 14 15 syl13anc ˙GGrpActYAXBYCYA+GNA˙C=A˙NA˙C
17 7 gagrpid ˙GGrpActYCY0G˙C=C
18 11 14 17 syl2anc ˙GGrpActYAXBYCY0G˙C=C
19 10 16 18 3eqtr3d ˙GGrpActYAXBYCYA˙NA˙C=C
20 19 eqeq2d ˙GGrpActYAXBYCYA˙B=A˙NA˙CA˙B=C
21 simpr2 ˙GGrpActYAXBYCYBY
22 1 gaf ˙GGrpActY˙:X×YY
23 22 adantr ˙GGrpActYAXBYCY˙:X×YY
24 23 13 14 fovcdmd ˙GGrpActYAXBYCYNA˙CY
25 1 galcan ˙GGrpActYAXBYNA˙CYA˙B=A˙NA˙CB=NA˙C
26 11 5 21 24 25 syl13anc ˙GGrpActYAXBYCYA˙B=A˙NA˙CB=NA˙C
27 20 26 bitr3d ˙GGrpActYAXBYCYA˙B=CB=NA˙C
28 eqcom B=NA˙CNA˙C=B
29 27 28 bitrdi ˙GGrpActYAXBYCYA˙B=CNA˙C=B