Metamath Proof Explorer


Theorem gastacl

Description: The stabilizer subgroup in a group action. (Contributed by Mario Carneiro, 15-Jan-2015)

Ref Expression
Hypotheses gasta.1 X=BaseG
gasta.2 H=uX|u˙A=A
Assertion gastacl ˙GGrpActYAYHSubGrpG

Proof

Step Hyp Ref Expression
1 gasta.1 X=BaseG
2 gasta.2 H=uX|u˙A=A
3 2 ssrab3 HX
4 3 a1i ˙GGrpActYAYHX
5 gagrp ˙GGrpActYGGrp
6 5 adantr ˙GGrpActYAYGGrp
7 eqid 0G=0G
8 1 7 grpidcl GGrp0GX
9 6 8 syl ˙GGrpActYAY0GX
10 7 gagrpid ˙GGrpActYAY0G˙A=A
11 oveq1 u=0Gu˙A=0G˙A
12 11 eqeq1d u=0Gu˙A=A0G˙A=A
13 12 2 elrab2 0GH0GX0G˙A=A
14 9 10 13 sylanbrc ˙GGrpActYAY0GH
15 14 ne0d ˙GGrpActYAYH
16 simpll ˙GGrpActYAYxHyH˙GGrpActY
17 16 5 syl ˙GGrpActYAYxHyHGGrp
18 simpr ˙GGrpActYAYxHxH
19 oveq1 u=xu˙A=x˙A
20 19 eqeq1d u=xu˙A=Ax˙A=A
21 20 2 elrab2 xHxXx˙A=A
22 18 21 sylib ˙GGrpActYAYxHxXx˙A=A
23 22 simpld ˙GGrpActYAYxHxX
24 23 adantrr ˙GGrpActYAYxHyHxX
25 simprr ˙GGrpActYAYxHyHyH
26 oveq1 u=yu˙A=y˙A
27 26 eqeq1d u=yu˙A=Ay˙A=A
28 27 2 elrab2 yHyXy˙A=A
29 25 28 sylib ˙GGrpActYAYxHyHyXy˙A=A
30 29 simpld ˙GGrpActYAYxHyHyX
31 eqid +G=+G
32 1 31 grpcl GGrpxXyXx+GyX
33 17 24 30 32 syl3anc ˙GGrpActYAYxHyHx+GyX
34 simplr ˙GGrpActYAYxHyHAY
35 1 31 gaass ˙GGrpActYxXyXAYx+Gy˙A=x˙y˙A
36 16 24 30 34 35 syl13anc ˙GGrpActYAYxHyHx+Gy˙A=x˙y˙A
37 29 simprd ˙GGrpActYAYxHyHy˙A=A
38 37 oveq2d ˙GGrpActYAYxHyHx˙y˙A=x˙A
39 22 simprd ˙GGrpActYAYxHx˙A=A
40 39 adantrr ˙GGrpActYAYxHyHx˙A=A
41 36 38 40 3eqtrd ˙GGrpActYAYxHyHx+Gy˙A=A
42 oveq1 u=x+Gyu˙A=x+Gy˙A
43 42 eqeq1d u=x+Gyu˙A=Ax+Gy˙A=A
44 43 2 elrab2 x+GyHx+GyXx+Gy˙A=A
45 33 41 44 sylanbrc ˙GGrpActYAYxHyHx+GyH
46 45 anassrs ˙GGrpActYAYxHyHx+GyH
47 46 ralrimiva ˙GGrpActYAYxHyHx+GyH
48 simpll ˙GGrpActYAYxH˙GGrpActY
49 48 5 syl ˙GGrpActYAYxHGGrp
50 eqid invgG=invgG
51 1 50 grpinvcl GGrpxXinvgGxX
52 49 23 51 syl2anc ˙GGrpActYAYxHinvgGxX
53 simplr ˙GGrpActYAYxHAY
54 1 50 gacan ˙GGrpActYxXAYAYx˙A=AinvgGx˙A=A
55 48 23 53 53 54 syl13anc ˙GGrpActYAYxHx˙A=AinvgGx˙A=A
56 39 55 mpbid ˙GGrpActYAYxHinvgGx˙A=A
57 oveq1 u=invgGxu˙A=invgGx˙A
58 57 eqeq1d u=invgGxu˙A=AinvgGx˙A=A
59 58 2 elrab2 invgGxHinvgGxXinvgGx˙A=A
60 52 56 59 sylanbrc ˙GGrpActYAYxHinvgGxH
61 47 60 jca ˙GGrpActYAYxHyHx+GyHinvgGxH
62 61 ralrimiva ˙GGrpActYAYxHyHx+GyHinvgGxH
63 1 31 50 issubg2 GGrpHSubGrpGHXHxHyHx+GyHinvgGxH
64 6 63 syl ˙GGrpActYAYHSubGrpGHXHxHyHx+GyHinvgGxH
65 4 15 62 64 mpbir3and ˙GGrpActYAYHSubGrpG