Metamath Proof Explorer


Theorem gastacos

Description: Write the coset relation for the stabilizer subgroup. (Contributed by Mario Carneiro, 15-Jan-2015)

Ref Expression
Hypotheses gasta.1 X=BaseG
gasta.2 H=uX|u˙A=A
orbsta.r ˙=G~QGH
Assertion gastacos ˙GGrpActYAYBXCXB˙CB˙A=C˙A

Proof

Step Hyp Ref Expression
1 gasta.1 X=BaseG
2 gasta.2 H=uX|u˙A=A
3 orbsta.r ˙=G~QGH
4 1 2 gastacl ˙GGrpActYAYHSubGrpG
5 4 adantr ˙GGrpActYAYBXCXHSubGrpG
6 subgrcl HSubGrpGGGrp
7 5 6 syl ˙GGrpActYAYBXCXGGrp
8 1 subgss HSubGrpGHX
9 5 8 syl ˙GGrpActYAYBXCXHX
10 eqid invgG=invgG
11 eqid +G=+G
12 1 10 11 3 eqgval GGrpHXB˙CBXCXinvgGB+GCH
13 7 9 12 syl2anc ˙GGrpActYAYBXCXB˙CBXCXinvgGB+GCH
14 df-3an BXCXinvgGB+GCHBXCXinvgGB+GCH
15 13 14 bitrdi ˙GGrpActYAYBXCXB˙CBXCXinvgGB+GCH
16 simpr ˙GGrpActYAYBXCXBXCX
17 16 biantrurd ˙GGrpActYAYBXCXinvgGB+GCHBXCXinvgGB+GCH
18 simpll ˙GGrpActYAYBXCX˙GGrpActY
19 simprl ˙GGrpActYAYBXCXBX
20 1 10 grpinvcl GGrpBXinvgGBX
21 7 19 20 syl2anc ˙GGrpActYAYBXCXinvgGBX
22 simprr ˙GGrpActYAYBXCXCX
23 simplr ˙GGrpActYAYBXCXAY
24 1 11 gaass ˙GGrpActYinvgGBXCXAYinvgGB+GC˙A=invgGB˙C˙A
25 18 21 22 23 24 syl13anc ˙GGrpActYAYBXCXinvgGB+GC˙A=invgGB˙C˙A
26 25 eqeq1d ˙GGrpActYAYBXCXinvgGB+GC˙A=AinvgGB˙C˙A=A
27 1 11 grpcl GGrpinvgGBXCXinvgGB+GCX
28 7 21 22 27 syl3anc ˙GGrpActYAYBXCXinvgGB+GCX
29 oveq1 u=invgGB+GCu˙A=invgGB+GC˙A
30 29 eqeq1d u=invgGB+GCu˙A=AinvgGB+GC˙A=A
31 30 2 elrab2 invgGB+GCHinvgGB+GCXinvgGB+GC˙A=A
32 31 baib invgGB+GCXinvgGB+GCHinvgGB+GC˙A=A
33 28 32 syl ˙GGrpActYAYBXCXinvgGB+GCHinvgGB+GC˙A=A
34 1 gaf ˙GGrpActY˙:X×YY
35 18 34 syl ˙GGrpActYAYBXCX˙:X×YY
36 35 22 23 fovcdmd ˙GGrpActYAYBXCXC˙AY
37 1 10 gacan ˙GGrpActYBXAYC˙AYB˙A=C˙AinvgGB˙C˙A=A
38 18 19 23 36 37 syl13anc ˙GGrpActYAYBXCXB˙A=C˙AinvgGB˙C˙A=A
39 26 33 38 3bitr4d ˙GGrpActYAYBXCXinvgGB+GCHB˙A=C˙A
40 15 17 39 3bitr2d ˙GGrpActYAYBXCXB˙CB˙A=C˙A