Description: Lemma 5 for gausslemma2d . (Contributed by AV, 9-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gausslemma2d.p | |
|
gausslemma2d.h | |
||
gausslemma2d.r | |
||
gausslemma2d.m | |
||
gausslemma2d.n | |
||
Assertion | gausslemma2dlem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2d.p | |
|
2 | gausslemma2d.h | |
|
3 | gausslemma2d.r | |
|
4 | gausslemma2d.m | |
|
5 | gausslemma2d.n | |
|
6 | 1 2 3 4 | gausslemma2dlem5a | |
7 | fzfi | |
|
8 | 7 | a1i | |
9 | neg1cn | |
|
10 | 9 | a1i | |
11 | elfzelz | |
|
12 | 2z | |
|
13 | 12 | a1i | |
14 | 11 13 | zmulcld | |
15 | 14 | zcnd | |
16 | 15 | adantl | |
17 | 8 10 16 | fprodmul | |
18 | 7 9 | pm3.2i | |
19 | fprodconst | |
|
20 | 18 19 | mp1i | |
21 | nnoddn2prm | |
|
22 | nnre | |
|
23 | 22 | adantr | |
24 | 1 21 23 | 3syl | |
25 | 4re | |
|
26 | 25 | a1i | |
27 | 4ne0 | |
|
28 | 27 | a1i | |
29 | 24 26 28 | redivcld | |
30 | 29 | flcld | |
31 | 4 30 | eqeltrid | |
32 | 31 | peano2zd | |
33 | nnz | |
|
34 | oddm1d2 | |
|
35 | 33 34 | syl | |
36 | 35 | biimpa | |
37 | 1 21 36 | 3syl | |
38 | 2 37 | eqeltrid | |
39 | 1 4 2 | gausslemma2dlem0f | |
40 | eluz2 | |
|
41 | 32 38 39 40 | syl3anbrc | |
42 | hashfz | |
|
43 | 41 42 | syl | |
44 | 38 | zcnd | |
45 | 31 | zcnd | |
46 | 1cnd | |
|
47 | 44 45 46 | nppcan2d | |
48 | 47 5 | eqtr4di | |
49 | 43 48 | eqtrd | |
50 | 49 | oveq2d | |
51 | 20 50 | eqtrd | |
52 | 51 | oveq1d | |
53 | 17 52 | eqtrd | |
54 | 53 | oveq1d | |
55 | 6 54 | eqtrd | |