Metamath Proof Explorer


Theorem gausslemma2dlem5

Description: Lemma 5 for gausslemma2d . (Contributed by AV, 9-Jul-2021)

Ref Expression
Hypotheses gausslemma2d.p φP2
gausslemma2d.h H=P12
gausslemma2d.r R=x1Hifx2<P2x2Px2
gausslemma2d.m M=P4
gausslemma2d.n N=HM
Assertion gausslemma2dlem5 φk=M+1HRkmodP=1Nk=M+1Hk2modP

Proof

Step Hyp Ref Expression
1 gausslemma2d.p φP2
2 gausslemma2d.h H=P12
3 gausslemma2d.r R=x1Hifx2<P2x2Px2
4 gausslemma2d.m M=P4
5 gausslemma2d.n N=HM
6 1 2 3 4 gausslemma2dlem5a φk=M+1HRkmodP=k=M+1H-1k2modP
7 fzfi M+1HFin
8 7 a1i φM+1HFin
9 neg1cn 1
10 9 a1i φkM+1H1
11 elfzelz kM+1Hk
12 2z 2
13 12 a1i kM+1H2
14 11 13 zmulcld kM+1Hk2
15 14 zcnd kM+1Hk2
16 15 adantl φkM+1Hk2
17 8 10 16 fprodmul φk=M+1H-1k2=k=M+1H-1k=M+1Hk2
18 7 9 pm3.2i M+1HFin1
19 fprodconst M+1HFin1k=M+1H-1=1M+1H
20 18 19 mp1i φk=M+1H-1=1M+1H
21 nnoddn2prm P2P¬2P
22 nnre PP
23 22 adantr P¬2PP
24 1 21 23 3syl φP
25 4re 4
26 25 a1i φ4
27 4ne0 40
28 27 a1i φ40
29 24 26 28 redivcld φP4
30 29 flcld φP4
31 4 30 eqeltrid φM
32 31 peano2zd φM+1
33 nnz PP
34 oddm1d2 P¬2PP12
35 33 34 syl P¬2PP12
36 35 biimpa P¬2PP12
37 1 21 36 3syl φP12
38 2 37 eqeltrid φH
39 1 4 2 gausslemma2dlem0f φM+1H
40 eluz2 HM+1M+1HM+1H
41 32 38 39 40 syl3anbrc φHM+1
42 hashfz HM+1M+1H=H-M+1+1
43 41 42 syl φM+1H=H-M+1+1
44 38 zcnd φH
45 31 zcnd φM
46 1cnd φ1
47 44 45 46 nppcan2d φH-M+1+1=HM
48 47 5 eqtr4di φH-M+1+1=N
49 43 48 eqtrd φM+1H=N
50 49 oveq2d φ1M+1H=1N
51 20 50 eqtrd φk=M+1H-1=1N
52 51 oveq1d φk=M+1H-1k=M+1Hk2=1Nk=M+1Hk2
53 17 52 eqtrd φk=M+1H-1k2=1Nk=M+1Hk2
54 53 oveq1d φk=M+1H-1k2modP=1Nk=M+1Hk2modP
55 6 54 eqtrd φk=M+1HRkmodP=1Nk=M+1Hk2modP