Metamath Proof Explorer


Theorem genpnnp

Description: The result of an operation on positive reals is different from the set of positive fractions. (Contributed by NM, 29-Feb-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses genp.1 F=w𝑷,v𝑷x|ywzvx=yGz
genp.2 y𝑸z𝑸yGz𝑸
genpnnp.3 z𝑸x<𝑸yzGx<𝑸zGy
genpnnp.4 xGy=yGx
Assertion genpnnp A𝑷B𝑷¬AFB=𝑸

Proof

Step Hyp Ref Expression
1 genp.1 F=w𝑷,v𝑷x|ywzvx=yGz
2 genp.2 y𝑸z𝑸yGz𝑸
3 genpnnp.3 z𝑸x<𝑸yzGx<𝑸zGy
4 genpnnp.4 xGy=yGx
5 prpssnq A𝑷A𝑸
6 pssnel A𝑸ww𝑸¬wA
7 5 6 syl A𝑷ww𝑸¬wA
8 prpssnq B𝑷B𝑸
9 pssnel B𝑸vv𝑸¬vB
10 8 9 syl B𝑷vv𝑸¬vB
11 7 10 anim12i A𝑷B𝑷ww𝑸¬wAvv𝑸¬vB
12 exdistrv wvw𝑸¬wAv𝑸¬vBww𝑸¬wAvv𝑸¬vB
13 11 12 sylibr A𝑷B𝑷wvw𝑸¬wAv𝑸¬vB
14 prub A𝑷fAw𝑸¬wAf<𝑸w
15 prub B𝑷gBv𝑸¬vBg<𝑸v
16 14 15 im2anan9 A𝑷fAw𝑸B𝑷gBv𝑸¬wA¬vBf<𝑸wg<𝑸v
17 elprnq A𝑷fAf𝑸
18 17 anim1i A𝑷fAw𝑸f𝑸w𝑸
19 elprnq B𝑷gBg𝑸
20 19 anim1i B𝑷gBv𝑸g𝑸v𝑸
21 ltsonq <𝑸Or𝑸
22 so2nr <𝑸Or𝑸f𝑸w𝑸¬f<𝑸ww<𝑸f
23 21 22 mpan f𝑸w𝑸¬f<𝑸ww<𝑸f
24 23 ad2antrr f𝑸w𝑸g𝑸v𝑸wGv=fGg¬f<𝑸ww<𝑸f
25 simpr g𝑸v𝑸v𝑸
26 simpl f𝑸w𝑸f𝑸
27 25 26 anim12i g𝑸v𝑸f𝑸w𝑸v𝑸f𝑸
28 27 ancoms f𝑸w𝑸g𝑸v𝑸v𝑸f𝑸
29 vex wV
30 vex vV
31 vex fV
32 vex gV
33 29 30 3 31 4 32 caovord3 v𝑸f𝑸wGv=fGgw<𝑸fg<𝑸v
34 33 anbi2d v𝑸f𝑸wGv=fGgf<𝑸ww<𝑸ff<𝑸wg<𝑸v
35 28 34 sylan f𝑸w𝑸g𝑸v𝑸wGv=fGgf<𝑸ww<𝑸ff<𝑸wg<𝑸v
36 24 35 mtbid f𝑸w𝑸g𝑸v𝑸wGv=fGg¬f<𝑸wg<𝑸v
37 36 ex f𝑸w𝑸g𝑸v𝑸wGv=fGg¬f<𝑸wg<𝑸v
38 37 con2d f𝑸w𝑸g𝑸v𝑸f<𝑸wg<𝑸v¬wGv=fGg
39 18 20 38 syl2an A𝑷fAw𝑸B𝑷gBv𝑸f<𝑸wg<𝑸v¬wGv=fGg
40 16 39 syld A𝑷fAw𝑸B𝑷gBv𝑸¬wA¬vB¬wGv=fGg
41 40 an4s A𝑷fAB𝑷gBw𝑸v𝑸¬wA¬vB¬wGv=fGg
42 41 ex A𝑷fAB𝑷gBw𝑸v𝑸¬wA¬vB¬wGv=fGg
43 42 an4s A𝑷B𝑷fAgBw𝑸v𝑸¬wA¬vB¬wGv=fGg
44 43 ex A𝑷B𝑷fAgBw𝑸v𝑸¬wA¬vB¬wGv=fGg
45 44 com24 A𝑷B𝑷¬wA¬vBw𝑸v𝑸fAgB¬wGv=fGg
46 45 imp32 A𝑷B𝑷¬wA¬vBw𝑸v𝑸fAgB¬wGv=fGg
47 46 ralrimivv A𝑷B𝑷¬wA¬vBw𝑸v𝑸fAgB¬wGv=fGg
48 ralnex2 fAgB¬wGv=fGg¬fAgBwGv=fGg
49 47 48 sylib A𝑷B𝑷¬wA¬vBw𝑸v𝑸¬fAgBwGv=fGg
50 1 2 genpelv A𝑷B𝑷wGvAFBfAgBwGv=fGg
51 50 adantr A𝑷B𝑷¬wA¬vBw𝑸v𝑸wGvAFBfAgBwGv=fGg
52 49 51 mtbird A𝑷B𝑷¬wA¬vBw𝑸v𝑸¬wGvAFB
53 52 expcom ¬wA¬vBw𝑸v𝑸A𝑷B𝑷¬wGvAFB
54 53 ancoms w𝑸v𝑸¬wA¬vBA𝑷B𝑷¬wGvAFB
55 54 an4s w𝑸¬wAv𝑸¬vBA𝑷B𝑷¬wGvAFB
56 2 caovcl w𝑸v𝑸wGv𝑸
57 eleq2 AFB=𝑸wGvAFBwGv𝑸
58 57 biimprcd wGv𝑸AFB=𝑸wGvAFB
59 58 con3d wGv𝑸¬wGvAFB¬AFB=𝑸
60 56 59 syl w𝑸v𝑸¬wGvAFB¬AFB=𝑸
61 60 ad2ant2r w𝑸¬wAv𝑸¬vB¬wGvAFB¬AFB=𝑸
62 55 61 syldc A𝑷B𝑷w𝑸¬wAv𝑸¬vB¬AFB=𝑸
63 62 exlimdvv A𝑷B𝑷wvw𝑸¬wAv𝑸¬vB¬AFB=𝑸
64 13 63 mpd A𝑷B𝑷¬AFB=𝑸