Metamath Proof Explorer


Theorem genpnnp

Description: The result of an operation on positive reals is different from the set of positive fractions. (Contributed by NM, 29-Feb-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses genp.1 F = w 𝑷 , v 𝑷 x | y w z v x = y G z
genp.2 y 𝑸 z 𝑸 y G z 𝑸
genpnnp.3 z 𝑸 x < 𝑸 y z G x < 𝑸 z G y
genpnnp.4 x G y = y G x
Assertion genpnnp A 𝑷 B 𝑷 ¬ A F B = 𝑸

Proof

Step Hyp Ref Expression
1 genp.1 F = w 𝑷 , v 𝑷 x | y w z v x = y G z
2 genp.2 y 𝑸 z 𝑸 y G z 𝑸
3 genpnnp.3 z 𝑸 x < 𝑸 y z G x < 𝑸 z G y
4 genpnnp.4 x G y = y G x
5 prpssnq A 𝑷 A 𝑸
6 pssnel A 𝑸 w w 𝑸 ¬ w A
7 5 6 syl A 𝑷 w w 𝑸 ¬ w A
8 prpssnq B 𝑷 B 𝑸
9 pssnel B 𝑸 v v 𝑸 ¬ v B
10 8 9 syl B 𝑷 v v 𝑸 ¬ v B
11 7 10 anim12i A 𝑷 B 𝑷 w w 𝑸 ¬ w A v v 𝑸 ¬ v B
12 exdistrv w v w 𝑸 ¬ w A v 𝑸 ¬ v B w w 𝑸 ¬ w A v v 𝑸 ¬ v B
13 11 12 sylibr A 𝑷 B 𝑷 w v w 𝑸 ¬ w A v 𝑸 ¬ v B
14 prub A 𝑷 f A w 𝑸 ¬ w A f < 𝑸 w
15 prub B 𝑷 g B v 𝑸 ¬ v B g < 𝑸 v
16 14 15 im2anan9 A 𝑷 f A w 𝑸 B 𝑷 g B v 𝑸 ¬ w A ¬ v B f < 𝑸 w g < 𝑸 v
17 elprnq A 𝑷 f A f 𝑸
18 17 anim1i A 𝑷 f A w 𝑸 f 𝑸 w 𝑸
19 elprnq B 𝑷 g B g 𝑸
20 19 anim1i B 𝑷 g B v 𝑸 g 𝑸 v 𝑸
21 ltsonq < 𝑸 Or 𝑸
22 so2nr < 𝑸 Or 𝑸 f 𝑸 w 𝑸 ¬ f < 𝑸 w w < 𝑸 f
23 21 22 mpan f 𝑸 w 𝑸 ¬ f < 𝑸 w w < 𝑸 f
24 23 ad2antrr f 𝑸 w 𝑸 g 𝑸 v 𝑸 w G v = f G g ¬ f < 𝑸 w w < 𝑸 f
25 simpr g 𝑸 v 𝑸 v 𝑸
26 simpl f 𝑸 w 𝑸 f 𝑸
27 25 26 anim12i g 𝑸 v 𝑸 f 𝑸 w 𝑸 v 𝑸 f 𝑸
28 27 ancoms f 𝑸 w 𝑸 g 𝑸 v 𝑸 v 𝑸 f 𝑸
29 vex w V
30 vex v V
31 vex f V
32 vex g V
33 29 30 3 31 4 32 caovord3 v 𝑸 f 𝑸 w G v = f G g w < 𝑸 f g < 𝑸 v
34 33 anbi2d v 𝑸 f 𝑸 w G v = f G g f < 𝑸 w w < 𝑸 f f < 𝑸 w g < 𝑸 v
35 28 34 sylan f 𝑸 w 𝑸 g 𝑸 v 𝑸 w G v = f G g f < 𝑸 w w < 𝑸 f f < 𝑸 w g < 𝑸 v
36 24 35 mtbid f 𝑸 w 𝑸 g 𝑸 v 𝑸 w G v = f G g ¬ f < 𝑸 w g < 𝑸 v
37 36 ex f 𝑸 w 𝑸 g 𝑸 v 𝑸 w G v = f G g ¬ f < 𝑸 w g < 𝑸 v
38 37 con2d f 𝑸 w 𝑸 g 𝑸 v 𝑸 f < 𝑸 w g < 𝑸 v ¬ w G v = f G g
39 18 20 38 syl2an A 𝑷 f A w 𝑸 B 𝑷 g B v 𝑸 f < 𝑸 w g < 𝑸 v ¬ w G v = f G g
40 16 39 syld A 𝑷 f A w 𝑸 B 𝑷 g B v 𝑸 ¬ w A ¬ v B ¬ w G v = f G g
41 40 an4s A 𝑷 f A B 𝑷 g B w 𝑸 v 𝑸 ¬ w A ¬ v B ¬ w G v = f G g
42 41 ex A 𝑷 f A B 𝑷 g B w 𝑸 v 𝑸 ¬ w A ¬ v B ¬ w G v = f G g
43 42 an4s A 𝑷 B 𝑷 f A g B w 𝑸 v 𝑸 ¬ w A ¬ v B ¬ w G v = f G g
44 43 ex A 𝑷 B 𝑷 f A g B w 𝑸 v 𝑸 ¬ w A ¬ v B ¬ w G v = f G g
45 44 com24 A 𝑷 B 𝑷 ¬ w A ¬ v B w 𝑸 v 𝑸 f A g B ¬ w G v = f G g
46 45 imp32 A 𝑷 B 𝑷 ¬ w A ¬ v B w 𝑸 v 𝑸 f A g B ¬ w G v = f G g
47 46 ralrimivv A 𝑷 B 𝑷 ¬ w A ¬ v B w 𝑸 v 𝑸 f A g B ¬ w G v = f G g
48 ralnex2 f A g B ¬ w G v = f G g ¬ f A g B w G v = f G g
49 47 48 sylib A 𝑷 B 𝑷 ¬ w A ¬ v B w 𝑸 v 𝑸 ¬ f A g B w G v = f G g
50 1 2 genpelv A 𝑷 B 𝑷 w G v A F B f A g B w G v = f G g
51 50 adantr A 𝑷 B 𝑷 ¬ w A ¬ v B w 𝑸 v 𝑸 w G v A F B f A g B w G v = f G g
52 49 51 mtbird A 𝑷 B 𝑷 ¬ w A ¬ v B w 𝑸 v 𝑸 ¬ w G v A F B
53 52 expcom ¬ w A ¬ v B w 𝑸 v 𝑸 A 𝑷 B 𝑷 ¬ w G v A F B
54 53 ancoms w 𝑸 v 𝑸 ¬ w A ¬ v B A 𝑷 B 𝑷 ¬ w G v A F B
55 54 an4s w 𝑸 ¬ w A v 𝑸 ¬ v B A 𝑷 B 𝑷 ¬ w G v A F B
56 2 caovcl w 𝑸 v 𝑸 w G v 𝑸
57 eleq2 A F B = 𝑸 w G v A F B w G v 𝑸
58 57 biimprcd w G v 𝑸 A F B = 𝑸 w G v A F B
59 58 con3d w G v 𝑸 ¬ w G v A F B ¬ A F B = 𝑸
60 56 59 syl w 𝑸 v 𝑸 ¬ w G v A F B ¬ A F B = 𝑸
61 60 ad2ant2r w 𝑸 ¬ w A v 𝑸 ¬ v B ¬ w G v A F B ¬ A F B = 𝑸
62 55 61 syldc A 𝑷 B 𝑷 w 𝑸 ¬ w A v 𝑸 ¬ v B ¬ A F B = 𝑸
63 62 exlimdvv A 𝑷 B 𝑷 w v w 𝑸 ¬ w A v 𝑸 ¬ v B ¬ A F B = 𝑸
64 13 63 mpd A 𝑷 B 𝑷 ¬ A F B = 𝑸