Description: The result of an operation on positive reals is different from the set of positive fractions. (Contributed by NM, 29-Feb-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | genp.1 | |
|
genp.2 | |
||
genpnnp.3 | |
||
genpnnp.4 | |
||
Assertion | genpnnp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | genp.1 | |
|
2 | genp.2 | |
|
3 | genpnnp.3 | |
|
4 | genpnnp.4 | |
|
5 | prpssnq | |
|
6 | pssnel | |
|
7 | 5 6 | syl | |
8 | prpssnq | |
|
9 | pssnel | |
|
10 | 8 9 | syl | |
11 | 7 10 | anim12i | |
12 | exdistrv | |
|
13 | 11 12 | sylibr | |
14 | prub | |
|
15 | prub | |
|
16 | 14 15 | im2anan9 | |
17 | elprnq | |
|
18 | 17 | anim1i | |
19 | elprnq | |
|
20 | 19 | anim1i | |
21 | ltsonq | |
|
22 | so2nr | |
|
23 | 21 22 | mpan | |
24 | 23 | ad2antrr | |
25 | simpr | |
|
26 | simpl | |
|
27 | 25 26 | anim12i | |
28 | 27 | ancoms | |
29 | vex | |
|
30 | vex | |
|
31 | vex | |
|
32 | vex | |
|
33 | 29 30 3 31 4 32 | caovord3 | |
34 | 33 | anbi2d | |
35 | 28 34 | sylan | |
36 | 24 35 | mtbid | |
37 | 36 | ex | |
38 | 37 | con2d | |
39 | 18 20 38 | syl2an | |
40 | 16 39 | syld | |
41 | 40 | an4s | |
42 | 41 | ex | |
43 | 42 | an4s | |
44 | 43 | ex | |
45 | 44 | com24 | |
46 | 45 | imp32 | |
47 | 46 | ralrimivv | |
48 | ralnex2 | |
|
49 | 47 48 | sylib | |
50 | 1 2 | genpelv | |
51 | 50 | adantr | |
52 | 49 51 | mtbird | |
53 | 52 | expcom | |
54 | 53 | ancoms | |
55 | 54 | an4s | |
56 | 2 | caovcl | |
57 | eleq2 | |
|
58 | 57 | biimprcd | |
59 | 58 | con3d | |
60 | 56 59 | syl | |
61 | 60 | ad2ant2r | |
62 | 55 61 | syldc | |
63 | 62 | exlimdvv | |
64 | 13 63 | mpd | |