Metamath Proof Explorer


Theorem geo2sum

Description: The value of the finite geometric series 2 ^ -u 1 + 2 ^ -u 2 + ... + 2 ^ -u N , multiplied by a constant. (Contributed by Mario Carneiro, 17-Mar-2014) (Revised by Mario Carneiro, 26-Apr-2014)

Ref Expression
Assertion geo2sum NAk=1NA2k=AA2N

Proof

Step Hyp Ref Expression
1 1zzd NA1
2 nnz NN
3 2 adantr NAN
4 simplr NAk1NA
5 2nn 2
6 elfznn k1Nk
7 6 adantl NAk1Nk
8 7 nnnn0d NAk1Nk0
9 nnexpcl 2k02k
10 5 8 9 sylancr NAk1N2k
11 10 nncnd NAk1N2k
12 10 nnne0d NAk1N2k0
13 4 11 12 divcld NAk1NA2k
14 oveq2 k=j+12k=2j+1
15 14 oveq2d k=j+1A2k=A2j+1
16 1 1 3 13 15 fsumshftm NAk=1NA2k=j=11N1A2j+1
17 1m1e0 11=0
18 17 oveq1i 11N1=0N1
19 18 sumeq1i j=11N1A2j+1=j=0N1A2j+1
20 halfcn 12
21 elfznn0 j0N1j0
22 21 adantl NAj0N1j0
23 expcl 12j012j
24 20 22 23 sylancr NAj0N112j
25 2cnd NAj0N12
26 2ne0 20
27 26 a1i NAj0N120
28 24 25 27 divrecd NAj0N112j2=12j12
29 expp1 12j012j+1=12j12
30 20 22 29 sylancr NAj0N112j+1=12j12
31 elfzelz j0N1j
32 31 peano2zd j0N1j+1
33 32 adantl NAj0N1j+1
34 25 27 33 exprecd NAj0N112j+1=12j+1
35 28 30 34 3eqtr2rd NAj0N112j+1=12j2
36 35 oveq2d NAj0N1A12j+1=A12j2
37 simplr NAj0N1A
38 peano2nn0 j0j+10
39 22 38 syl NAj0N1j+10
40 nnexpcl 2j+102j+1
41 5 39 40 sylancr NAj0N12j+1
42 41 nncnd NAj0N12j+1
43 41 nnne0d NAj0N12j+10
44 37 42 43 divrecd NAj0N1A2j+1=A12j+1
45 24 37 25 27 div12d NAj0N112jA2=A12j2
46 36 44 45 3eqtr4d NAj0N1A2j+1=12jA2
47 46 sumeq2dv NAj=0N1A2j+1=j=0N112jA2
48 fzfid NA0N1Fin
49 halfcl AA2
50 49 adantl NAA2
51 48 50 24 fsummulc1 NAj=0N112jA2=j=0N112jA2
52 47 51 eqtr4d NAj=0N1A2j+1=j=0N112jA2
53 19 52 eqtrid NAj=11N1A2j+1=j=0N112jA2
54 2cnd NA2
55 26 a1i NA20
56 54 55 3 exprecd NA12N=12N
57 56 oveq2d NA112N=112N
58 1mhlfehlf 112=12
59 58 a1i NA112=12
60 57 59 oveq12d NA112N112=112N12
61 simpr NAA
62 61 54 55 divrec2d NAA2=12A
63 60 62 oveq12d NA112N112A2=112N1212A
64 ax-1cn 1
65 nnnn0 NN0
66 65 adantr NAN0
67 nnexpcl 2N02N
68 5 66 67 sylancr NA2N
69 68 nnrecred NA12N
70 69 recnd NA12N
71 subcl 112N112N
72 64 70 71 sylancr NA112N
73 20 a1i NA12
74 0re 0
75 halfgt0 0<12
76 74 75 gtneii 120
77 76 a1i NA120
78 72 73 77 divcld NA112N12
79 78 73 61 mulassd NA112N1212A=112N1212A
80 72 73 77 divcan1d NA112N1212=112N
81 80 oveq1d NA112N1212A=112NA
82 63 79 81 3eqtr2d NA112N112A2=112NA
83 halfre 12
84 halflt1 12<1
85 83 84 ltneii 121
86 85 a1i NA121
87 73 86 66 geoser NAj=0N112j=112N112
88 87 oveq1d NAj=0N112jA2=112N112A2
89 mullid A1A=A
90 89 adantl NA1A=A
91 90 eqcomd NAA=1A
92 68 nncnd NA2N
93 68 nnne0d NA2N0
94 61 92 93 divrec2d NAA2N=12NA
95 91 94 oveq12d NAAA2N=1A12NA
96 64 a1i NA1
97 96 70 61 subdird NA112NA=1A12NA
98 95 97 eqtr4d NAAA2N=112NA
99 82 88 98 3eqtr4d NAj=0N112jA2=AA2N
100 16 53 99 3eqtrd NAk=1NA2k=AA2N