Metamath Proof Explorer


Theorem gg-rmulccn

Description: Multiplication by a real constant is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)

Ref Expression
Hypotheses gg-rmulccn.1 J=topGenran.
gg-rmulccn.2 φC
Assertion gg-rmulccn φxxCJCnJ

Proof

Step Hyp Ref Expression
1 gg-rmulccn.1 J=topGenran.
2 gg-rmulccn.2 φC
3 eqid TopOpenfld=TopOpenfld
4 3 cnfldtopon TopOpenfldTopOn
5 4 a1i φTopOpenfldTopOn
6 5 cnmptid φxxTopOpenfldCnTopOpenfld
7 2 recnd φC
8 5 5 7 cnmptc φxCTopOpenfldCnTopOpenfld
9 3 mpomulcn y,zyzTopOpenfld×tTopOpenfldCnTopOpenfld
10 9 a1i φy,zyzTopOpenfld×tTopOpenfldCnTopOpenfld
11 oveq12 y=xz=Cyz=xC
12 5 6 8 5 5 10 11 cnmpt12 φxxCTopOpenfldCnTopOpenfld
13 ax-resscn
14 4 toponunii =TopOpenfld
15 14 cnrest xxCTopOpenfldCnTopOpenfldxxCTopOpenfld𝑡CnTopOpenfld
16 12 13 15 sylancl φxxCTopOpenfld𝑡CnTopOpenfld
17 simpr φxx
18 7 adantr φxC
19 17 18 mulcld φxxC
20 19 ralrimiva φxxC
21 eqid xxC=xxC
22 21 fnmpt xxCxxCFn
23 20 22 syl φxxCFn
24 fnssres xxCFnxxCFn
25 23 13 24 sylancl φxxCFn
26 simpr φww
27 fvres wxxCw=xxCw
28 recn ww
29 oveq1 x=wxC=wC
30 ovex wCV
31 29 21 30 fvmpt wxxCw=wC
32 28 31 syl wxxCw=wC
33 27 32 eqtrd wxxCw=wC
34 26 33 syl φwxxCw=wC
35 2 adantr φwC
36 26 35 remulcld φwwC
37 34 36 eqeltrd φwxxCw
38 37 ralrimiva φwxxCw
39 fnfvrnss xxCFnwxxCwranxxC
40 25 38 39 syl2anc φranxxC
41 13 a1i φ
42 cnrest2 TopOpenfldTopOnranxxCxxCTopOpenfld𝑡CnTopOpenfldxxCTopOpenfld𝑡CnTopOpenfld𝑡
43 5 40 41 42 syl3anc φxxCTopOpenfld𝑡CnTopOpenfldxxCTopOpenfld𝑡CnTopOpenfld𝑡
44 16 43 mpbid φxxCTopOpenfld𝑡CnTopOpenfld𝑡
45 resmpt xxC=xxC
46 13 45 ax-mp xxC=xxC
47 3 tgioo2 topGenran.=TopOpenfld𝑡
48 1 47 eqtri J=TopOpenfld𝑡
49 48 48 oveq12i JCnJ=TopOpenfld𝑡CnTopOpenfld𝑡
50 49 eqcomi TopOpenfld𝑡CnTopOpenfld𝑡=JCnJ
51 44 46 50 3eltr3g φxxCJCnJ